
PERC: Posit Enhanced Rocket Chip
Arunkumar M. V.

Sai Ganesh Bhairathi

Harshal G. Hayatnagarkar

arunkumar.mv@thoughtworks.com

saiganeb@thoughtworks.com

harshalh@thoughtworks.com

Engineering for Research

ThoughtWorks Technologies India

Pune, Maharashtra, India - 411006

ABSTRACT
Balancing between precision and performance is a known trade-off

in system design. Universal Number system attempts to dissolve

this trade-off with its flexible arbitrary precision bound within fixed

bit length. Its Type-III class, also known as Posits, has been espe-

cially introduced to be hardware implementation friendly. Posit is

a dynamic floating-point representation that ensures better accu-

racy and precision using a system that minimizes the number of

unusable representations and introduces a higher dynamic range

which can serve as a substitute for the IEEE-754 2008 floating-point

standard.

In this paper, we share our experience with implementation and

integration of a Posit Processing Unit (PPU) into the Rocket Chip

SoC generator. This PPU replaces the IEEE-754 2008 FPU inside the

chip, and supports both of RISC-V ISA floating-point extensions

namely ‘F’ for single precision and ‘D’ for double precision using

32-bit and 64-bit posits respectively. We discuss various design

choices that were available to us and the decisions made in this

work. We elaborate our use of Chisel, a Scala embedded hardware

construction DSL, to describe our design. Later we observe how

various constructs in Chisel help not only to describe a product but

also aids the description process in a robust, flexible and efficient

manner.

We further delve into how the design has been tested using a

version of the RISC-V ISA test suite which has been modified for

Posit arithmetic numbers. The paper also discusses the scope for fu-

ture work that can be done, including a posit arithmetic accelerator

and higher-level toolchain support for posits.

ACM Reference Format:
Arunkumar M. V., Sai Ganesh Bhairathi, and Harshal G. Hayatnagarkar.

2020. PERC: Posit Enhanced Rocket Chip. In Proceedings of Fourth Workshop
on Computer Architecture Research with RISC-V (CARRV 2020). ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CARRV 2020, May 30, 2020, Valencia, Spain
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Precision and performance of arithmetic processing is a known

trade-off of a system design. The IEEE 754 fixed width 32-bit and

64-bit precision arithmetic, while tuned for performance, suffers in

the precision. The arbitrary precision computing while solves the

precision side of the problem, it suffers on the performance front

[13]. The precision and performance requirements of a real number

representation depends on its usage. A number representation that

can be adjusted for the specific needs of precision can become

useful. Universal Number format (unum) attempts to address this

need.

Unum attempts to tackle this trade-off with its flexible arbitrary

precision bound within fixed bit length via its Type-III class, also

known as Posits. Posit is a dynamic floating point representation

that ensures better accuracy and precision using a system that

minimizes the number of unusable representations and introduces

a higher dynamic range which can serve as a substitute for the

IEEE-754 2008 floating point standard. Posit has been specifically

introduced to be hardware implementation friendly. A question

could arise as to which hardware to choose for implementation.

For research and prototyping, it is convinient to choose an open

source option. RISC-V offers such an option for being an open

standard instruction set architecture (ISA) [26], and the Rocket

Chip, a synthesizable implementation of RISC-V [1].

In this paper, we share our experience to implement and integrate

a Posit Processing Unit (PPU) into the Rocket Chip SoC generator.

This PPU replaces the IEEE-754 2008 FPU inside the chip, and

supports both of RISC-V ISA floating-point extensions namely ‘F’

for single precision and ‘D’ for double precision using 32-bit and

64-bit posits respectively.

We discuss various design choices that were available to us and

the decisions made in this work. We elaborate our use of Chisel, a

Scala embedded hardware construction DSL, to describe our design.

We also share our observations about how various constructs in

Chisel help not only to describe a product design but also aids the

process of description in a robust, flexible and efficient manner.

We continue to explain the design of the PPU, with a focus on

modularity and later reuse. We further delve into how the design

has been tested using a version of the RISC-V ISA test suite which

has beenmodified for Posit arithmetic numbers.We finally conclude

this paper mentioning possible enhancements for future work.

In the next section, we discuss similar related work as well as

technologies on which we have built PPU.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CARRV 2020, May 30, 2020, Valencia, Spain Arunkumar M. V., Sai Ganesh Bhairathi, and Harshal G. Hayatnagarkar

2 BACKGROUND TECHNOLOGIES AND
WORK

Even though posit arithmetic was introduced recently, extensive

work has gone towards its adoption. This includes studies in the

viability of posit arithmetic as a replacement for IEEE-754 floats

[7, 19, 24], software implementations[18, 22] and hardware imple-

mentations for different posit arithmetic units [4, 6, 16, 17]. These

hardware implementations were of independent units and did com-

plete computing support for a complete ISA. A recent similar work

namely PERI implements a posit arithmetic unit on top of the RISC-

V implementation SHAKTI processor [10, 23]. In the rest of this

section, we will discuss technologies that form the foundation of

our work.

2.1 Unum and Posit Arithmetic
The Universal Number (or Unum for short) is a binary representa-

tion format for real numbers, to address the precision error rooted

in the fixed width fraction and exponent representation in float-

ing point formats such as IEEE 754 [12]. However, due to variable

length representation, original unum types I and II are not friendly

to hardware implementation. The latest standard Unum Type-III
called posits is a hardware friendly version of unums. Posits ensure

more accuracy and precision using a system that minimizes the

number of unusable representations and introduces higher dynamic

range, resulting in superior accuracy compared to IEEE-754 floats

[7][19].

The equation (1) shows the formal posit format. The format

is a dynamic floating point representation which has two fixed

parameters: posit size(𝑝𝑠) and exponent size(𝑒𝑠).

𝑆𝑖𝑔𝑛︷︸︸︷
𝑠

𝑅𝑒𝑔𝑖𝑚𝑒︷ ︸︸ ︷
𝑟 𝑟 𝑟 · · · 𝑟

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡, 𝑖 𝑓 𝑎𝑛𝑦︷ ︸︸ ︷
𝑒1 𝑒2 𝑒3 · · · 𝑒𝑒𝑠

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑖 𝑓 𝑎𝑛𝑦︷ ︸︸ ︷
𝑓1 𝑓2 𝑓3 · · ·︸ ︷︷ ︸

𝑝𝑜𝑠𝑖𝑡 𝑠𝑖𝑧𝑒

(1)

Similar to floats, posits also contain the sign, exponent and frac-

tion bits with an additional field called regime. Negative numbers

are represented using 2’s complement in posits. Regime bits come

after the sign bit and are a set of similar bits terminated by a com-

plementary bit. The number of similar bits in the regime field 𝑟𝑐

gives the regime value 𝑘 (2). 𝑒𝑠 bits occurring after the regime gives

the posit exponent 𝑒 . The actual exponent value 𝑒𝑥𝑝 is derived from

the regime value 𝑘 and posit exponent bits 𝑒 (3). The remaining

bits trailing after exponent bits are the fraction bits 𝑓 . The posit

value 𝑥 is obtained according to (4) after adding the hidden bit to

the fraction which is always 1 in the case of posits.

𝑘 =

{
𝑟𝑐 − 1 if regime starts with 1

−𝑟𝑐 otherwise

(2)

𝑒𝑥𝑝 = (𝑘 ≪ 𝑒𝑠) + 𝑒 (3)

𝑥 =

0 𝑃 = 000 · · · 000

𝑁𝑎𝑅 𝑃 = 100 · · · 000

(−1)𝑠 × 2
𝑒𝑥𝑝 × 1.𝑓 otherwise

(4)

As a consequence of the run length encoding of the regime the

exponent and fraction bits are optional, and come after regime bits

if bit positions are left. This also means that the higher precision

numbers can be represented with much smaller 𝑒𝑠 values. The

dynamic range of a posit number is dependent on the 𝑒𝑠 value

as larger es can be used to represent exponent values. This form

of scaled dynamic representation also minimizes the number of

unusable representations contrary to the IEEE-754 2008 floating

point standard which features fixed width bit fields. It has a single

representation for 0, another one for +∞ or −∞ called ‘Not A Real’,
and does not support subnormal representations. All these factors

taken together facilitate a hardware friendly number system that

can serve as a viable replacement for the IEEE-754 floating point

standard.

2.2 RISC-V and Rocket Chip SoC generator
RISC-V is an open standard instruction set architecture (ISA) which

features a minimal base integer ISA(I instructions) with optional

standard extensions [26]. The standard extensions include sup-

port for real number computations and provisions for custom

instructions. This modular and extensible structure has enabled

open source processor implementations around RISC-V such as

SHAKTI[10], Rocket Chip/BOOM [1], Ariane [27].
RISC-V ISA supplies the F and D standard extensions to support

single and double precision floating-point computations using the

IEEE-754 2008 arithmetic standard. It also has reserved two major

opcode spaces for custom instructions meaning that they can be

utilized with the assurance that no future standard extensions will

utilize these opcodes. In a later section, the paper proposes how

these ISA extensions can be leveraged to provide support for posit

arithmetic.

Rocket Chip is a flexible and parameterized system-on-chip (SoC)

generator which emits synthesizable register-transfer level (RTL).

Designed using the Chisel hardware construction language [2], it

features an extensive library of generators for cores, caches and

interconnects required for the integrated SoC. Rocket chip also

supports integration of custom co-processors (or accelerators) by

adding them as tightly coupled units or standalone processors [1].

These chip building generator libraries can be used to generate

different SoC variants. This is enabled by the use of standard inter-

faces to interconnect different units. This “plug-n-play” approach

to hardware generation allows different designs to be generated by

just changing the configuration files, keeping the actual hardware

description source code untouched. Thus hardware designers can

easily add extensions without breaking the original design.

The solution proposed in this paper also leverages this feature

to add posit support to the Rocket Chip.

2.3 Chisel and FIRRTL
Chisel (Constructing Hardware In a Scala Embedded Language) is

an open source hardware construction DSL embedded in the Scala

programming language[2]. By adding hardware construction prim-

itives to the Scala language, it enables designers to write complex,

parameterizable circuit generators. It highly resembles a traditional

hardware-description language (HDL) such as Verilog rather than a

high-level synthesis language. In fact, Chisel when compiled, emits

PERC: Posit Enhanced Rocket Chip CARRV 2020, May 30, 2020, Valencia, Spain

synthesizable Verilog through an intermediate representation called

FIRRTL[15]. It brings features of modern software languages like

object-oriented and functional programming to circuit description.

Chisel also comes with a variety of testers and simulators in-

cluding Chisel IO Testers and Verilator[5]. Verilator can generate a

fast, cycle-accurate RTL simulator implemented in C++ from the

Verilog emitted from Chisel, which is functionally equivalent to but

significantly faster than other Verilog simulators.

Based on this understanding of the Rocket chip and its ecosystem

including Chisel, we have developed a floating point compatible

Posit Processing Unit (PPU), discussed in the rest of the paper.

3 THE POSIT ARITHMETIC MODULES
In this section we discuss the arithmetic modules that make up the

PPU. These modules have been implemented in Chisel which allows

for parameterizable circuit generation of modules for any 𝑝𝑠 and

𝑒𝑠 value. Being a Chisel library, this modularity enables reusability

of these modules in alternate implementations such as SoC units

and accelerators.

3.1 Posit Extractor
The posit extractor extracts the sign exponent and fraction from

an input posit number. The unit also detects whether the input

posit number is 2 special values 0 or NaR contrary to the IEEE-

754 representation which requires checking for 5 different special

values: qNaN, sNaN, infinity, zero and subnormal numbers. The

exponent in a posit number is scaled using a run length encoded

regime. Regime extraction involves counting similar adjacent bits

after the sign bit. Algorithm 1 gives the algorithm implemented by

the extractor.

Algorithm 1: Algorithm for Posit extraction

Input :P: Posit number of 𝑝𝑠 bits

Output : rs: Sign of P, re: Exponent of P, rf: Fraction of P,
isZero: Indicate if P is zero, isNaR: Indicate if P is

NaR

1 isZero←∼| P
2 isNaR← P[ps - 1]& ∼| P[ps - 2 : 0]
3 rs← P[ps - 1]
4 if rs then
5 P←∼ P + 1

6 k, rc← extarctRegime(P)
7 P← P ≪ (rc + 2)
8 e← P[ps - 1 : ps - es]
9 re← e + k ≪ 𝑒𝑠

10 rf ← 1 ∥ P ≪ 𝑒𝑠

3.2 Posit Generator
The posit generator is responsible for generating a posit encoded

number from the real number fields supplied to it. The regime is

extracted from the input exponent value and added to the final posit

number along with the remaining 𝑒𝑠 exponent bits and fraction bits.

A sticky bit is also supplied to the generator which is the logical

OR of all the bits shifted out from previous circuit levels. Proper

rounding is carried out using the truncated fraction bits and the

input sticky bit. Posit supports only one rounding mode that is

round to nearest even while IEEE-754 supports 5 rounding modes.

Rounding is carried out in such a way that if the posit will not be

rounded up to NaR (in case of maxpos) or rounded down to zero.

Algorithm 2 gives the algorithm implemented by the generator.

Algorithm 2: Algorithm for Posit Generation

Input : s: Sign for P, e: Exponent for P, f: Fraction for P,
isZero: Indicate if P is zero, isNaR: Indicate if P is

NaR, sb: Sticky bit

Output :P: Generated posit number of 𝑝𝑠 bits

1 e, f ← checkIfNormalized(e, f)
2 k← e ≫ 𝑒𝑠

3 c← 3

4 if e[MSB] then
5 k← −k

c← 2

6 exp← e[es - 1 : 0]
7 pshft← k + 𝑒𝑠 + c
8 rb← generateRegime(k)
9 P← rb ∥ exp ∥ f

10 sb← sb | (| P[pshft- 2 : 0])
11 ab← P[pshft- 1]
12 lb← P[pshft]
13 rb← (lb & ab) | (ab & sb)
14 P← P ≫ pshft
15 if (∼ P[ps + 1] & (& P[ps - 2 : 0])) then
16 rb← 0

17 if P = 0 then
18 P← 1

19 P← P + rb
20 if s then
21 P←∼ P − 1

22 if isZero then
23 P← 0

24 if isNaR then
25 P← 𝑁𝑎𝑅

3.3 Posit Fused Multiply-Add
The FusedMultiply-Addmodule performs the FMAoperationwhich

takes in 3 posit numbers, multiplies the first 2 numbers and adds the

product with the third number, implemented using Algorithm 3. It

has 2 additional boolean inputs, 𝑛𝑒𝑔 to negate the result and 𝑠𝑢𝑏 to

perform subtraction instead of addition. The FMA module can also

be used to perform normal addition, subtraction and multiplication

to reduce/reuse resources. The module also checks if the result is

zero or NaR but does not need any exception flags as these are

silent exceptions. In contrast to IEEE-754 floating point FMA which

has to check for overflow and underflow of the product exponent

CARRV 2020, May 30, 2020, Valencia, Spain Arunkumar M. V., Sai Ganesh Bhairathi, and Harshal G. Hayatnagarkar

and normalization of subnormal product fractions, the posit FMA

module is only burdened with overflow checking for the product

fraction.

Algorithm 3: Algorithm for Posit Fused Multiply-Add

Input :num1: First posit operand, num2: Second posit

operand, num3: Third posit operand

Output :P: FMA result posit number of 𝑝𝑠 bits

1 s1, e1, f1, isNaR1, isZero1 ← PositExtractor(num1)

2 s2, e2, f2, isNaR2, isZero2 ← PositExtractor(num2)

3 s3, e3, f3, isNaR3, isZero3 ← PositExtractor(num3)

4 rIsNaR← isNaR1 | isNaR2 | isNaR3

5 rIsZero← (isZero1 | isZero2) & isZero3

6 Ls← s1 ⊕ s2 ⊕ neg
7 Ss← s3 ⊕ neg ⊕ sub
8 Se, Sf ← e3, f3
9 Le← e1 + e2

10 Lf ← f1 × f2
11 Le, Lf ← checkOverflow(Lf)
12 if (Se > Le) | (Se = Le & (Sf > Lf)) then
13 swap(Ls, Ss), swap (Le, Se), swap(Lf, Sf)

14 rs← Ls
15 re← Le
16 expDiff ← Le − Se
17 sb← | Sf[expDiff- 1 : 0]
18 Sf ← Sf ≫ expDiff
19 if Ls ⊕ Ss then
20 Sf ← −Sf
21 rf ← Lf + Sf
22 re, rf, sb← checkOverflowAndNormalize(re, rf, sb)
23 P← PositGenerator(rs, re, rs, rIsZero, rIsNaR, sb)

3.4 Posit Division and Square Root
The Division square root module takes in 2 posit numbers and

performs division of the 2 numbers or the square root of the first

number based on a boolean input 𝑜𝑝 . Division and square root are

performed using a sequential non restoring algorithm. Algorithm 4

is implemented by themodule. Themodule uses a FIFO (ready/valid)

interface for accepting inputs and 2 valid signals to indicate when

the output is valid for each case(division or square root).

For IEEE-754 division 5 exceptions can occur while for posits

the only possible exception is divide by zero which is detected by

the module. In the case of square root for posits no exceptions can

occur.

3.5 Posit Comparison
Comparison of posits is exactly the same as that of integer com-

parison. This is a consequence of the dynamic representation and

the fact that negative posits are represented using 2’s complement

similar to integers. This simplifies comparison to a huge extent com-

pared to IEEE-754 which must detect multiple exceptional cases like

Algorithm 4: Algorithm for Posit Division Square Root

Input :num1: First posit operand, num2: Second posit

operand(ignored if sqrtOp is high), sqrtOp:
Indicates whether division or square root is to be

performed

Output :P: Division or Square Root result posit number of

𝑝𝑠 bits, exception: Exceptions occurred

1 s1, e1, f1, isNaR1, isZero1 ← PositExtractor(num1)

2 s2, e2, f2, isNaR2, isZero2 ← PositExtractor(num2)

3 rIsNaR← isNaR1 | (sqrtOp & s1) | (∼ sqrtOp & isNaR2)
4 rIsZero← isZero1

5 exception←∼ sqrtOp & isZero2

6 rs←∼ sqrtOp & (s1 ⊕ s2)
7 if sqrtOp then
8 re← e1 ≫ 1

9 else
10 re← e1 − e2

11 if sqrtOp & e1 [0] then
12 f1 ← f1 ≪ 1

13 rf, sb← nonRestoringDivSqrt(f1, f2, sqrtOp)
14 rf, re← normalize(rf)
15 P← PositGenerator(rs, re, rf, rIsZero, rIsNaR, sb)

comparison between +0 and −0 or between NaN representations

while posits face no such exceptions.

The compare module also utilizes signed integer comparison

to compare 2 input numbers and outputs 3 boolean signals that

indicate if the first number is less than, equal to or greater than the

second number.

3.6 Posit-to-Integer Converter
The Posit-to-Integer converter takes in a posit number of 𝑝𝑠 bits

and outputs a signed or unsigned integer of 𝑖𝑤 bits. A boolean

input 𝑢𝑠 indicates whether the output is signed or unsigned. The

module is parameterized by 𝑖𝑤 to support different output integer

widths. The integer is computed by offsetting the fraction by the

exponent size and extracting the most significant bits as depicted

in Algorithm 5. As posits do not support inexact representations

no checks are performed in contrast to IEEE-754.

3.7 Integer-to-Posit Converter
The Integer-to-Posit converter takes in an integer of 𝑖𝑤 bits and

outputs a posit number of 𝑝𝑠 bits. A boolean input 𝑢𝑠 indicates

whether the input integer is signed or unsigned. Similar to the posit

to integer converter the module is parameterized for different input

integer widths. The integer is converted to posit by counting the

most significant zeros to derive the exponent and fraction bits as

captured in Algorithm 6. Compared to IEEE-754 which has to check

for inexactness, integer to posit conversion does not require any

such checks.

PERC: Posit Enhanced Rocket Chip CARRV 2020, May 30, 2020, Valencia, Spain

Algorithm 5: Algorithm for Posit-to-Integer Conversion

Input :P: Posit number of 𝑝𝑠 bits, us: Indicate
whether output is signed or unsigned

Output : I: Integer result of 𝑖𝑤 bits

1 s, e, f, isNaR, isZero← PositExtractor(P)
2 Is← s & ∼ us
3 f ← f ≪ e
4 If← f[𝑖𝑤 + 𝑝𝑠 − 1 : 𝑝𝑠]
5 if us & (e ≥ 𝑖𝑤) then
6 If ← 2

𝑝𝑠 − 1

7 if ∼ us & (e ≥ (𝑖𝑤 − 1)) then
8 If ← 2

(𝑝𝑠−1) − 1

9 rb← f[𝑝𝑠 − 1]
10 I← round(If, rb)
11 if Is then
12 I←∼ I + 1

Algorithm 6: Algorithm for Integer to Posit Conversion

Input : I: Integer 𝑖𝑤 bits, us: Indicate whether input is
signed or unsigned

Output :P: Posit result of 𝑝𝑠 bits

1 rIsZero← I = 0

2 rIsNaR← 0

3 rs← I[iw - 1] & ∼ us
4 if rs then
5 I←∼ I + 1

6 zc← countMSBZeros(I)
7 I← I≪ zc
8 re← (𝑖𝑤 − 1) − zc
9 rf← (1 ∥ I[iw - 2: 0]) ≪ 𝑝𝑠 − 𝑖𝑤 + 1

10 sb← 0

11 if 𝑖𝑤 > 𝑝𝑠 + 1 then
12 sb← (| I[𝑖𝑤 − 𝑝𝑠 − 2 : 0])

13 P← PositGenerator(rs, re, rf, rIsZero, rIsNaR, sb)

3.8 Posit-to-Posit Converter
The Posit-to-Posit Converter take in a posit of total size 𝑖𝑝𝑠 and

exponent size 𝑖𝑒𝑠 and converts it to a posit of 𝑜𝑝𝑠 and exponent size

𝑜𝑒𝑠 . The module extracts the fields from the input posit, shifts the

fraction if the conversion is widening or truncates it for a narrowing

conversion, and generates the new posit. This conversion does not

produce any exceptions.

4 RISC-V INSTRUCTION SUPPORT
The RISC-V ISA standard does not inherently support posit arith-

metic operations. The 2 possible approaches to add support for posit

arithmetic are overloading the predefined extensions for floating-

point computations or utilizing the custom opcode space that the

ISA provides. Here we discuss the benefits and caveats of each

approach.

4.1 Overloading the F and D extensions
The single precision (F) and double precision (D) RISC-V ISA exten-

sions supply floating-point computational instructions compliant

with the IEEE-754 2008 arithmetic standard for 32 bit and 64 bit

floats respectively [26].

It is notable that most features of posits map perfectly to the F

and D instructions [11]. To provide support for both 32-bit and 64-

bit posits using the F and D extensions we propose a few deviations

from the standard.

The same 32 register architecture as that proposed by the ISA

can be utilized although with one small deviation. The D extension

proposes NaN boxing to support writing narrow floats to the regis-

ter by setting the remaining most significant bits to 1. This is not

possible in posits as all representations other than NaR are valid.

There is no method to differentiate between boxed and unboxed

values. Thus, the writes to the register can be the unchanged posits

itself with narrow writes padded with zeros, assuming that the

contents of the registers will not be used by higher level software

interchangeably. Another remedy for this problem would be to

maintain a separate 32-bit register to store the width of the last

write into (0 for 32-bit register write and 1 for 64-bit register write)

and read from the register file accordingly.

The floating point control and status register is a 32-bit register

which contains 5 bits for exception flags, 3 bits to indicate rounding

mode and remaining bits are reserved by the ISA. For posit compati-

bility given that the occurrence of NaR is a silent exception we only

require one exception flag for DZ (divide by zero). Also posit only

supports one rounding mode that is round to nearest even, so the

rounding mode field also loses its significance, although rounding

mode support for posit to integer conversion may be of significance

for certain applications[23].

4.2 Utilizing Custom Instructions
The RISC-V ISA has reserved certain opcode spaces for custom

extension to provide support for user defined functionalities. This

adds the possibility of a posit arithmetic unit being added to Rocket

chip as a co-processor leveraging the RoCC interface and coexists

with the IEEE-745 2008 FPU rather than replacing it. We discuss

such a possibility in a later section of this paper.

Our approach in this paper leverages the F and D standard ex-

tensions by adding a new Posit Processing Unit(PPU) to the Rocket

core pipeline. This approach requires the minimal modification of

the software toolchain, whereas utilizing custom instructions, as

we understand, would involve modification of the RISC-V toolchain

including compilers and debuggers [3].

We were well aware that for providing complete support for

posits which includes quire register functionalities, an accelerator/co-

processor model would be necessary as the F and D extensions

do not provide such instructions. Though this is the case, a FPU-

compatible PPU in the core pipeline seems the right way to go to

verify if posits can be a viable replacement for the IEEE-754 2008

floating point standard and whether a RISC-V extension for posits

should be considered for a future addition.

CARRV 2020, May 30, 2020, Valencia, Spain Arunkumar M. V., Sai Ganesh Bhairathi, and Harshal G. Hayatnagarkar

Figure 1: Circuit Hierarchy of the PPU generated using diagrammer[8]

5 THE POSIT PROCESSING UNIT
In this section we delve into how a FPU-compatible Posit Process-

ing Unit (PPU) has been implemented using the posit arithmetic

modules mentioned previously. The PPU is modelled in a fashion

similar to the already existing IEEE-754 2008 FPU inside Rocket

Chip which internally uses the Berkeley hardfloat implementation.

The standard posit configuration used for single precision instruc-

tions is 𝑝𝑠 = 32, 𝑒𝑠 = 2 and for double precision instructions is 𝑝𝑠

= 64, 𝑒𝑠 = 3. The PPU consists of multiple inner modules which

together perform operations as mandated by the input instruction.

Figure 1 captures the top level circuit hierarchy of the PPU.

5.1 Floating Point Instruction Decoder
The floating-point instruction decoder is the same decoder used

inside the IEEE-754 2008 FPU. When the decoder is given the in-

struction as input it outputs a set of FPU control signals which

indicate the different operations to be performed by the PPU.

5.2 Posit to Integer Unit
This module takes care of all instructions which take in posits from

the PPU register file and produce an integer result to be written

into the integer register file. These instructions include the posit-

to-integer conversion instructions, classify instructions, compare

instructions, move posit to integer register file instructions and

load/store instructions.

The module contains 1 to 4 posit-to-integer converters to sup-

port integer conversion instructions. The unit also contains a posit

compare module for the compare instructions FEQ, FLT and FLE.
The classify instruction FCLASS for IEEE-754 requires the transfer
of a 10 bit mask to classify the number while for posits only 3 bits

are required, first bit for sign, second to indicate if the number is

NaR and third to indicate if the number is zero. The move instruc-

tions FMV.X.W and FMV.X.D move a value from the PPU register

file to an integer register. Posits are sign extended if a narrower

posit is moved to a wider integer registers.

5.3 Integer to Posit Unit
This module supports all instructions involving data taken from the

integer register file and produces results to be written into the PPU

register file. These instructions include integer-to-posit conversion

instructions and move from integer register file instructions.

The module contains 1 to 2 integer-to-posit converters to convert

the input integer to posit. The move instructions FMV.W.X and

FMV.D.X move a posit encoded value from the integer register file

to a PPU register. If a narrower integer is written into a wider posit

register it is also sign extended.

5.4 Posit to Posit Unit
This module is responsible for all operations involving instructions

with source and destination registers in the PPU register file ex-

cluding fused multiply-add and division square root operations.

These instructions include posit-to-posit conversion instructions,

sign injection instructions and min/max instructions.

The module contains 0 or 2 posit to posit converters based on

whether both F and D extensions are supported to convert between

32-bit and 64-bit posits. The module uses the output from the com-

pare module inside the posit to integer unit to compute the result

of the min/max instructions FMIN and FMAX that computes which

of 2 input numbers is the minimum or maximum.

The sign injection instructions FSGNJ, FSGNJN and FSGNJX
change the sign of a posit number based on the sign of another posit

number. As negative posits are represented using 2’s complement,

sign change also requires 2’s complementing the number while

IEEE-754 only requires toggling the sign bit.

PERC: Posit Enhanced Rocket Chip CARRV 2020, May 30, 2020, Valencia, Spain

5.5 Posit FMA Pipe Unit
This module interfaces a posit fused multiply-add module with the

PPU through a pipe interface which adds a latency to for proper

FMA operation. It takes care of all the fused multiply add instruc-

tions FMADD, FMSUB, FNMSUB, FNMADD, FADD, FMUL and FSUB.
The PPU contains 1 to 2 of these units based on whether both F

and D extensions are supported.

5.6 Posit DivSqrt Unit
The PPU also contains 1 to 2 posit division square root modules to

support the FDIV and FSQRT instructions. As division and square

root take multiple clock cycles to be performed, the FIFO interface

of the division square root module is used to indicate the completion

of the operation in the pipeline. This is the only unit that will set

an exception flag in the fcsr register which happens if the divisor

is zero.

The variable number of units inside the PPU and converters in

the inner modules are determined by the base integer ISA variant

used (RV32I or RV64I), and whether both F and D extensions are

supported. These are all parameterized, and can be configured for

circuit generation.

Currently the decoding/extraction and encoding/generation of

the posit happens in the arithmetic pipeline and not just during

load and store instructions. This enables us to avoid a separate

internal representation which could lead to rounding errors but

introduces a toll on the pipeline and resource usage[7]. Although

this is a foreseeable problem it can be ignored in a complete posit

implementation which uses a quire register where values are ac-

cumulated and extraction/generation is not performed for every

computational instruction.

The Rocket Chip project consists of a collection of parameterized

chip-building libraries that one can use to generate different SoC

variants. As mentioned earlier different designs can be generated

by changing the configuration files, keeping the hardware source

files untouched. Rocket Chip’s advanced configurability has also

been utilized in adding the PPU to the Rocket chip. This was done

by adding a new configuration which, when invoked during circuit

generation, replaces the Rocket Chip’s in house FPU with the PPU.

6 VERIFICATION AND OBSERVATIONS
6.1 Testing and Verification
The posit arithmetic modules were tested initially using unit tests

which were written using Chisel IO testers. The modules have also

been tested using a random test generator created utilizing the

universal numbers C++ template library[22]. After integrating the

modules into the PPU and adding it to Rocket chip, integration

tests were performed using Rocket Chip’s emulator enabled using

Verilator[5]. For the test cases wemodified the RISC-V ISA assembly

test suite and added tests for posit arithmetic numbers using F and

D instructions.

Early synthesis results of the PPU with both single and double

precision support for the Spartan-7 FPGA (xc7s75fgga484-1) using

Xilinx Vivado 2019.2 point to a slice LUT utilization of 15949. In com-

parison, the Rocket Chip’s well optimized in-house FPU occupies

12659 slice LUTs on the same synthesis target.

We believe the design can be further optimized to bring this

number significantly down.

6.2 Observations
6.2.1 Posit Software Support. As posit arithmetic is a fairly recent

introduction to the arithmetic computing space, no compiler in

RISC-V or any other architecture currently supports posits, to the

best of our knowledge. To provide ISA support for posits, a recent

approach suggests accepting the IEEE-754 floating-point numbers

from software and converting it to posit in hardware to maintain

compatibility with the existing toolchain [4, 16] . This however, will

reduce the potential of the posit format. As the maximum precision

of posit is much greater than that of IEEE-745 floats for certain

ranges of numbers, converting them to and from IEEE-754 floating-

point will lead to loss of this precision and introduces unnecessary

overhead[23].

The absence of posit support and the additional effort required

to add instructions to the existing toolchain were the main reasons

why we decided to leverage the F and D extensions. Thus, when the

value of the float is replaced with the value of the posit number in

the program itself, then all subsequent floating-point instructions

will operate upon the new posit values.

6.2.2 RISC-V Posit Arithmetic ISA Extension. A standard ISA ex-

tension for posit arithmetic would be another method to provide

posit ISA support. Such an extension has been proposed for 32-bit

posit support[11] which is similar to the F extension with some

necessary changes.

The extension would be able to provide some instructions that

are posit specific like quire manipulation operations and will guar-

antee support for floating-point and posit instructions in the same

architecture. We trust enabling support for a posit ISA extension in

the compilers and debuggers would be worth those efforts. Overall,

the extension could benefit domain-specific applications especially

related to high performance computing, data-intensive computing

and machine learning along with accelerating the adoption of posit

arithmetic in modern computing systems.

6.2.3 Chisel. As mentioned earlier, we used Chisel to describe our

design, which provides circuit-design specific constructs in Scala

language. For example, Chisel circuits are Scala classes.

So, even basic object-orientation helps to capture structural as-

pects of a circuit design, such that encapsulation, inheritance, and

polymorphism bring in scoping, reuse, and flexibility to handle di-

versity of implementations. Generics, traits, and other features help

to capture a meta-structure. Other features like a rich type-system

with support for structured data and bundled interfaces, width infer-

ence for wires, high-level descriptions of state machines, and bulk

wiring operations help make a lot of the design generic and reusable.

For example, one can represent a circuit for adders, irrespective of

its bit-width, which is made possible by combining features like

generics and traits. Even further, parameterization of generics offers

composition of meta-structures, so that the designers describe a cir-

cuit generator rather than a circuit itself. Functional programming

CARRV 2020, May 30, 2020, Valencia, Spain Arunkumar M. V., Sai Ganesh Bhairathi, and Harshal G. Hayatnagarkar

features such as higher order functions allow importing decisions

and behavior from outside of a structure.

Scala ecosystem benefits via integrated development environ-

ments, build tools and libraries. Static code analysis can flag po-

tential and actual defects in the source code namely ’Code Smells’.

In addition, the issues that are not caught there, developers can

write unit tests as supported by Chisel testers via Scala. The test-

driven development enables regression testing to discover breaking

changes sooner[9]. This gives an ability to create separately pack-

aged hardware libraries coupled unit tests. Overall, the cumulative

productivity boost helps to practice agile hardware development.

7 CONCLUSION AND FUTUREWORK
In this paper, we design a parameterized posit processing unit

using a library of posit arithmetic modules and integrate it with

the Rocket Chip SoC generator. We present how these modules

were constructed, followed by a discussion of using the RISC-V

ISA ‘F’ and ‘D’ extensions for posit arithmetic, or utilizing the

custom opcode space. We also mention the deviations from the

‘F’ and ‘D’ extensions to accommodate posits. From this we were

able to conclude that posits decrease the complexity involved in

floating point arithmetic compared to IEEE-754 by minimizing

unusable representations and exceptional cases. Later we document

the design approach and decisions taken for the PPU. We also

discuss how the designs were tested and note the progress in the

work. We also present some observations that were made which

played a role in the design decisions. We believe this work will be

extended in future. Rest of the section discusses possible extensions

based on current understanding.

7.1 Posit Arithmetic Accelerator
As mentioned in earlier sections one method to add RISC-V support

for posits is to utilize the custom opcode space. This facilitate an

accelerator/co-processor architecture. Rocket chip provides such an

interface called Rocket Custom Co-processor (or RoCC) interface

[20, 21] with its own custom instruction format.

This interface can be utilized to create a Posit Arithmetic accel-

erator which can provide complete posit functionality which can

utilize the posit arithmetic modules as a Chisel library. This is the

most feasible approach which will allow for IEEE-754 floats and

posits to co-exist in the same architecture.

7.2 RISC-V Toolchain Support
Open source compiler toolchains such as GCC and LLVM have

support for extensions and plugins to add features without altering

the core components [14, 25]. We are interested in adding posit

support to these toolchains as extensions.

ACKNOWLEDGEMENTS
The authors acknowledge the contributions byBhimsen Padalkar
in this work.

REFERENCES
[1] Asanović, K., Avizienis, R., Bachrach, J., Beamer, S., Biancolin, D., Celio, C.,

Cook, H., Dabbelt, D., Hauser, J., Izraelevitz, A., Karandikar, S., Keller, B.,

Kim, D., Koenig, J., Lee, Y., Love, E., Maas, M., Magyar, A., Mao, H., Moreto,

M., Ou, A., Patterson, D. A., Richards, B., Schmidt, C., Twigg, S., Vo, H., and

Waterman, A. The rocket chip generator. Tech. Rep. UCB/EECS-2016-17, EECS

Department, University of California, Berkeley, Apr 2016.

[2] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,

Wawrzynek, J., and Asanović, K. Chisel: constructing hardware in a scala

embedded language. In DAC Design Automation Conference 2012 (2012), IEEE,
pp. 1212–1221.

[3] Bandara, S., Ehret, A., Kava, D., and Kinsy, M. A. Brisc-v: An open-source

architecture design space exploration toolbox. Proceedings of the 2019 ACM/SIGDA
International Symposium on F ield-Programmable Gate Arrays (2019).

[4] Calligo-Techchnologies. "Posit Numeric Unit (PNU)", Mar 2018. https://

posithub.org/conga/2018/docs/9-Calligo-Technologies.pdf.

[5] Campbell, K. A., He, L., Yang, L., Gurumani, S. T., Rupnow, K., and Chen, D.

Debugging and verifying soc designs through effective cross-layer hardware-

software co-simulation. In DAC ’16 (2016).
[6] Chaurasiya, R., Gustafson, J., Shrestha, R., Neudorfer, J., Nambiar, S.,

Niyogi, K., Merchant, F., and Leupers, R. Parameterized posit arithmetic

hardware generator. 2018 IEEE 36th International Conference on Computer Design
(ICCD) (2018), 334–341.

[7] Dinechin, F. D., Forget, L., Muller, J.-M., and Uguen, Y. Posits: the good, the

bad and the ugly. In CoNGA’19 (2019).
[8] FREECHIPSPROJECT. "Chisel / FIRRTL Diagramming Project". https://github.

com/freechipsproject/diagrammer.

[9] Fucci, D., Erdogmus, H., Turhan, B., Oivo, M., and Juzgado, N. J. A dissection

of the test-driven development process: Does it really matter to test-first or to

test-last? IEEE Transactions on Software Engineering 43 (2017), 597–614.
[10] Gala, N., Menon, A., Bodduna, R., Madhusudan, G., and Kamakoti, V. Shakti

processors: An open-source hardware initiative. In 2016 29th International Confer-
ence on VLSI Design and 2016 15th International Conference on Embedded Systems
(VLSID) (2016), IEEE, pp. 7–8.

[11] Gustafson, J. L. "RISC-V proposed extension for 32-bit Posits(unofficial)", Jun

2018. https://posithub.org/docs/RISC-V/RISC-V.htm.

[12] Gustafson, J. L., and Yonemoto, I. T. Beating floating point at its own game:

Posit arithmetic. Supercomputing Frontiers and Innovations 4, 2 (2017), 71–86.
[13] Hofmann, J., Fey, D., Riedmann, M., Eitzinger, J., Hager, G., and Wellein, G.

Performance analysis of the kahan-enhanced scalar product on current multicore

processors. In PPAM (2015).

[14] Huang, Y., Peng, L., Wu, C., Kashnikov, Y., Rennecke, J., and Fursin, G. Trans-

forming GCC into a research-friendly environment: plugins for optimization

tuning and reordering, function cloning and program instrumentation. In 2nd
International Workshop on GCC Research Opportunities (GROW’10) (Pisa, Italy,
Jan. 2010).

[15] Izraelevitz, A., Koenig, J., Li, P., Lin, R., Wang, A., Magyar, A., Kim, D.,

Schmidt, C., Markley, C., Lawson, J., and Bachrach, J. Reusability is firrtl

ground: Hardware construction languages, compiler frameworks, and transfor-

mations. In 2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) (Nov 2017), pp. 209–216.

[16] Jaiswal, M. K., and So, H. K. . Universal number posit arithmetic generator on

fpga. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE)
(2018), pp. 1159–1162.

[17] Jaiswal, M. K., and So, H. K. . Pacogen: A hardware posit arithmetic core

generator. IEEE Access 7 (2019), 74586–74601.

[18] Leong, C. "Softposit C library". https://gitlab.com/cerlane/SoftPosit.

[19] Lindstrom, P., Lloyd, S., and Hittinger, J. Universal coding of the reals:

alternatives to ieee floating point. In CoNGA ’18 (2018).
[20] Mao, H. "Building custom SoCs with RocketChip", 2017. https://aspire.eecs.

berkeley.edu/wiki/_media/eop/2017/howard_mao_talk_slides.pdf.

[21] Panades, I. M. Design and programming of a coprocessor for a risc-v architecture.

In Collegio di Ingegneria Informatica, del Cinema e Meccatronica, Master degree
course in Computer Engineering (2017).

[22] Stillwater-Sc. "Universal: a C++ template library for universal number arith-

metic", Apr 2020. https://github.com/stillwater-sc/universal.

[23] Tiwari, S., Gala, N., Rebeiro, C., and Kamakoti, V. PERI: A posit enabled risc-v

core, 2019.

[24] Uguen, Y., Forget, L., and de Dinechin, F. Evaluating the hardware cost of

the posit number system. In FPL 2019 - 29th International Conference on Field-
Programmable Logic and Applications (FPL) (Barcelona, Spain, Sept. 2019), pp. 106
– 113.

[25] Vitovská, M., Chalupa, M., and Strejcek, J. Sbt-instrumentation: A tool for

configurable instrumentation of llvm bitcode. ArXiv abs/1810.12617 (2018).

[26] Waterman, A., Lee, Y., Patterson, D. A., and Asanovic, K. The risc-v instruc-

tion set manual, volume i: Base user-level isa version 2.0. EECS Department, UC
Berkeley, Tech. Rep. UCB/EECS-2014-54 (2014).

[27] Zaruba, F., and Benini, L. The cost of application-class processing: Energy and

performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi

technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27,
11 (Nov 2019), 2629–2640.

https://posithub.org/conga/2018/docs/9-Calligo-Technologies.pdf
https://posithub.org/conga/2018/docs/9-Calligo-Technologies.pdf
https://github.com/freechipsproject/diagrammer
https://github.com/freechipsproject/diagrammer
https://posithub.org/docs/RISC-V/RISC-V.htm
https://gitlab.com/cerlane/SoftPosit
https://aspire.eecs.berkeley.edu/wiki/_media/eop/2017/howard_mao_talk_slides.pdf
https://aspire.eecs.berkeley.edu/wiki/_media/eop/2017/howard_mao_talk_slides.pdf
https://github.com/stillwater-sc/universal

	Abstract
	1 Introduction
	2 Background Technologies and Work
	2.1 Unum and Posit Arithmetic
	2.2 RISC-V and Rocket Chip SoC generator
	2.3 Chisel and FIRRTL

	3 The Posit Arithmetic modules
	3.1 Posit Extractor
	3.2 Posit Generator
	3.3 Posit Fused Multiply-Add
	3.4 Posit Division and Square Root
	3.5 Posit Comparison
	3.6 Posit-to-Integer Converter
	3.7 Integer-to-Posit Converter
	3.8 Posit-to-Posit Converter

	4 RISC-V Instruction support
	4.1 Overloading the F and D extensions
	4.2 Utilizing Custom Instructions

	5 The Posit Processing Unit
	5.1 Floating Point Instruction Decoder
	5.2 Posit to Integer Unit
	5.3 Integer to Posit Unit
	5.4 Posit to Posit Unit
	5.5 Posit FMA Pipe Unit
	5.6 Posit DivSqrt Unit

	6 Verification and Observations
	6.1 Testing and Verification
	6.2 Observations

	7 Conclusion and Future Work
	7.1 Posit Arithmetic Accelerator
	7.2 RISC-V Toolchain Support

	References

