
Efficient Multiple-ISA Embedded Processor Core Design
Based on RISC-V

Yuanhu Cheng, Libo Huang*, Yijun Cui, Sheng Ma, Yongwen Wang, Bincai Sui
{chengyuanhu,libohuang,cuiyijun18,masheng,wyw,bingcaisui}@nudt.edu.cn

National University of Defense Technology
Changsha, China

ABSTRACT
RISC-V ISA is developing rapidly, and its target field highly overlaps
with the ARM ISA. As a later ISA, RISC-V needs to solve the problem
of software compatibility. In the embedded field, by a multiple-ISA
processor based on binary interpretation, RISC-V supports for ARM
Thumb can be implemented efficiently. However, binary interpreta-
tion may result in lower performance of running non-native ISA
programs than native ISA. As a result, to improve the performance
of running the ARM Thumb programs, we propose some optimiza-
tion methods of hardware support to reduce the number of RISC-V
instructions required to interpret ARM Thumb instructions. Based
on the open-source Zero-riscy core, we implement a demo to sup-
port ARMv6-M based on RISC-V. The results show that running
the ARMv6-M code of Dhrystone and CoreMark benchmarks com-
piled by ARMCC, Zero-riscy can achieve 85.0% and 73.1% of the
performance of running RISC-V code compiled by GCC with less
than 13.5% increase of FPGA resources.

KEYWORDS
RISC-V, ARM Thumb, Embedded, Multiple-ISA, Binary translation

1 INTRODUCTION
In recent years, the RISC-V instruction set architecture (ISA) has
developed rapidly, and its target field highly overlaps with the
ARM ISA. Compared to the traditional ISA, RISC-V has two obvious
advantages [21]: 1) open-source, users can apply the RISC-V ISA
for free to design processors, and even do secondary development
based on open-source code from an open-source community; 2)
the basic ISA is very simple and extensible. RISC-V has a series of
standard extensions, so users can flexibly choose extended ISA to
implement according to the scenario. These advantages of RISC-V
can greatly shorten development costs and the period of the proces-
sor. However, a large number of existing programs are developed
for traditional ISA (e.g. ARM and X86) and cannot run directly
on RISC-V processors. As a later ISA, RISC-V needs to solve the
problem of software compatibility.

In desktop and server systems, software binary translation [19] is
the most common method to overcome software compatibility. This
method only requires to install a binary translation system, and
then the program based on other ISAs can be directly run through
this system. The advantage of software binary translation systems
is its convenience and flexibility. Unfortunately, it has limitations
in the embedded system. First of all, due to the requirements of the
chip area and power of the embedded system, there is often not
enough storage space and environment to run a binary translation

*Corresponding author

system. Second, most binary translation systems are still designed
to complete functional simulation, but the performance has not
received much attention.

Another method to solve the software compatibility problem
is the multiple-ISA processor that adds dedicated hardware to the
traditional processor to support more than one ISAs. Although the
multiple-ISA processor also increases the area and power of the chip,
it is a more appropriate method that solving the problem of software
compatibility in the embedded field if it can be implemented with
very low hardware resource consumption. However, at present, the
most critical issue in using the hardware approach is the additional
hardware overhead associated with supporting multiple ISAs. For
example, in [7], a dynamic two-level binary translation system is
implemented. The first level translates from non-native ISA into
native ISA and the second level is used to optimize the generated
code, in which the first level increases the hardware overhead by
29% for supporting ARM, while the second level consumes more
than the first.

In this paper, we try to support RISC-V and ARM Thumb using
multiple-ISA processors based on binary interpretation, because the
method based on binary interpretation is the simplest so that it can
achieve a multiple-ISA processor with lowest hardware resources.
Firstly, we discuss the conversion of registers and instructions
betweenARMThumb and RISC-V RV32I, as well as the optimization
methods that can be taken to improve the performance of running
ARM Thumb programs using RISC-V processors. Then, we develop
a simple demo of the processor supporting the ARMv6-M (a subset
of ARM Thumb) and RISC-V ISAs. The demo is implemented by
adding a binary interpreter that converts ARMv6-M instructions
into RISC-V instructions in the fetch stage based on PULPino’s
open-source RISC-V core, called Zero-riscy (Ibex) [1, 2].We employe
Dhrystone and CoreMark to evaluate the performance of Zero-riscy
running ARMv6-M programs through simulation, and count the
FPGA resources consumed after synthesis.

Finally, on optimized Zero-riscy, for the Dhrystone code com-
piled by ARMCC compiler, each ARM Thumb instruction is trans-
lated into 1.62 RISC-V instructions with a performance of 0.69
DMIPS/MHz, 85.0% of the performance of running RISC-V com-
piled by GNU GCC compiler. And for the CoreMark code, each
ARM Thumb instruction is translated into 1.11 RISC-V instructions
with a performance of 1.22 CoreMark/MHz, 73.1% of RISC-V. Com-
pared to without any optimization, the performance is improved by
2.01 and 2.80 times respectively while the consumption of hardware
resources is decreased slightly.



, Cheng and Huang, et al.

2 RELATEDWORK
Binary translation is the most common way to overcome software
compatibility. According to different implementations, binary trans-
lation can be divided into three types: binary interpretation (or
emulator), dynamic translation, and static translation [3]. QEMU
[5] is a typical software binary translation system, which uses dy-
namic binary translation to translate an ISA into the corresponding
target ISA and supports to simulate the most popular ISAs. Simi-
larly, DAISY [10] and FX!32 [8, 13] are binary translation systems
that support specialized ISA. For embedded systems, LLBT [18]
is a static binary translation system based on the LLVM compiler,
and [4, 15–17] study the optimization methods of dynamic binary
translation for embedded systems.

There are some works that implement binary translation sys-
tem with combination of software and hardware. In these works,
the major function of the hardware is that accelerating the binary
translation process and optimizing the code to improve perfor-
mance. GODSON-3 Processor [14] uses software to translate X86
instructions into MIPS instructions and inserts some units into
hardware to support X86 instructions better. Furthermore, it adds
some instructions to MIPS ISA so that one X86 instruction can
be converted into fewer MIPS instructions. Crusoe processor [9]
is a microprocessor that uses Code Morphing Software (CMS) to
convert X86 instructions into VLIW instructions. CMS is a dynamic
binary translation program and stored in the Read-Only Memory
(ROM) of the motherboard and can be considered as part of the
hardware. By modifying CMS, the processor can support any ISA.
And hardware is also used to accelerate the speed of binary transla-
tion and optimize the code. And [22] improves the performance of
MIPS microprocessors running X86 programs by hardware based
on software dynamic binary translation.

Although there are some existing works that support multiple
ISAs by hardware, the method of hardware still requires more
research. [7, 11] implement a two-level binary translation system
outside a MIPS core. The first level translates from non-native
ISA into intermediate-level code (MIPS), and the second level is
used to optimize the code generated at the first level. It evaluates
the performance of running ARM, PowerPC, and X86 code by the
system. [6] applies the 64-bit very long instruction word (VLIW)
instruction, in which the upper n bits are used to identify the ISAs.
If an instruction belongs to non-native ISA, the corresponding
Dynamic Decode Units (DDU) are selected to convert it into native
ISA instruction. The size of n determines how many non-native
ISAs it can support, and each non-native ISA corresponds to a
DDU unit. [12] allows the Intel X86 and PowerPC ISAs to run on
a processor. Unlike binary translation, it implements two decode
units for two ISAs and the processor’s mode decides which one is
used. [20] uses a multi-core processor to support multiple ISAs, in
which each core supports one ISA. The system software is used to
select the ISA and power on the corresponding core.

3 SUPPORT ARM THUMBWITH RISC-V
The multiple-ISA processor based on binary interpretation needs
to implement the mapping of registers and instructions between
two ISAs. And the most critical problem with binary interpretation
is that the performance of running a non-native ISA program may

be much lower than running a native ISA program, because many
native instructions may be required to complete a non-native in-
struction. In this section, we will focus on how to interpret ARM
Thumb instructions into RISC-V instructions, as well as optimiza-
tion methods for some ARM Thumb instructions to improve per-
formance.

3.1 Register Mapping
The ARM Thumb includes thirteen general-purpose registers (R0 ~
R12), one Stack Pointer (SP, R13), one Link Register (LR, R14) and
one Program Counter (PC, R15), all of them are 32-bits. The RISC-
V includes 32 general-purpose registers, and the PC is a special
register. Because RISC-V has more registers than ARM Thumb,
register mapping can be easily achieved. However, the R0 of RISC-V
is always equal to 0 and cannot be modified, we cannot directly
map the R0 of ARM Thumb to RISC-V.

Therefore, we can map the registers R0 ~ R12 of the ARM Thumb
to R16 ~ R28 of RISC-V, SP to R29, LR to R30, and PC to R31. Since
most ARM Thumb instructions take 3 bits to represent a register
(R0 ~ R7), we can add a two-bits prefix ’10’ in front of the 3-bits
ARM Thumb register number to map it to the RISC-V register (if
the register number in the ARM Thumb instruction is represented
by 4 bits, just add a one-bit prefix ’1’ in front of it). All register
mapping relationships are shown in Table 1.

It is worth mentioning that many instructions can modify the
value of PC in ARM Thumb ISA, while RISC-V cannot. For a RISC-
V processor that supports ARM Thumb, it can still use the PC
register defined in RISC-V to complete the instruction fetch. If an
ARM Thumb instruction needs to modify the PC value, the RISC-V
AUIPC instruction is used firstly to load the PC value into register
R31. After performing related operations, the JALR instruction is
used to change the PC value and jump to target.

Because RISC-V and ARM Thumb are both Reduced Instruction
Set Computing (RISC) ISA, the instruction mapping between ARM
Thumb and RISC-V is relatively simple. However, some subtle dif-
ferences between them still make some ARM Thumb instructions
require many RISC-V instructions to achieve, which will greatly
reduce the performance of ARM Thumb programs.

3.2 Condition Flags
In ARM Thumb, most instructions need to change or use flag bits
that composed of Negative flag (N), Zero flag (Z), Carry flag (C),
and Overflow flag (V). There is a hardware logic and a special flags
register used to judge and save the flags produced by the most
recent instruction that needs to change the flags. In contrast, RISC-
V deals with the flags by software, which means that there is no
hardware logic and flags register inside the RISC-V processor. If a
flag bit is needed (for example, the carry flag may be required for
large integer addition), it will be produced by the software program,
which is usually done by the compiler.

In fact, if the software method is used to complete the flags
judgment, for an ADDS instruction of ARM Thumb (addition in-
struction, this instruction will change all flags of N, Z, C, and V), 7
additional RISC-V instructions will be needed to judge and save the
flags [21]. A typical flags judgment instruction sequence is shown
in Instruction List 1, in which N, Z, C, and V flags are stored in R1 ~



Efficient Multiple-ISA Embedded Processor Core Design
Based on RISC-V ,

Table 1: Register mapping from ARM Thumb to RISC-V

ARM Thumb Register RISC-V Register Added Prefix
R0 ~ R7 (000 ~ 111) R16 ~ R23 (10000 ~ 10111) 10

R8 ~ R12 (1000 ~ 1100) R24 ~ R28 (11000 ~ 11100) 1

SP (1101) R29 (11101) 1

LR (1110) R30 (11110) 1

PC (1111) PC/R31 (11111) 1

R4 respectively. So, how to process the flags will greatly affect the
final performance of running ARM Thumb programs.

Instruction List 1: ARM Thumb Flags judgment by RISC-V
instructions.

1 ;Judge and save N Flag
2 SLTI R1 , Rd , 0
3 ;Judge and save Z Flag
4 SLTU R2 , R0 , Rd
5 XORI R2 , R2 , 1
6 ;Judge and save C flag
7 SLTU R3 , Rd , Rn
8 ;Judge and save V flag
9 SLTI R5 , Rn , 0
10 SLT R6 , Rd ,Rm
11 XOR R4 , R5 , R6

If we can use hardware to support flags in the RISC-V processor,
the number of RISC-V instructions required by each ARM Thumb
instruction will be reduced greatly. To implement the hardware
flags, some modifications to the RISC-V processor are required:
1) change the implementation of the Arithmetic and Logic Unit
(ALU) so that it can generate the flags and the flags can be operated
with operands; 2) add a flags register to save the flags, and 3) add a
control signal to indicate whether an instruction changes the flags.
In fact, all these modifications are very simple and do not incur
significant hardware overhead.

Table 2 is the conversion of an ARM Thumb ADDS instruction to
the RISC-V instructions with and without hardware flags. Since the
source operand registers (Rm and Rn) and the destination operand
register (Rd) may be the same and the original operands are required
when determining the flags, the result cannot be directly written
to the destination register, but to a temporary register (R15). So,
additional instruction is used to move the result from the temporary
register to the destination register. Finally, an ADDS requires 9
RISC-V instructions without hardware flags, while only one RISC-V
instruction is required with hardware flags.

3.3 Branch Instructions
Besides, different flags implementations lead to different ways to
implement branch instructions. The implementation of branch in-
structions refers to the way of determining whether a branch takes
or not. For an ISA like RISC-V without hardware flags, the rela-
tionship between the two source operands determines the behavior
of the branch. But for an ISA like ARM Thumb with hardware
flags, the two source operands first take an operation, which will

impact the flags. And the result of the branch is based on the flags
generated by the operation.

If just RISC-V branch instructions are used to support the ARM
Thumb branch, in the worst case, an ARM Thumb branch instruc-
tion will need 9 RISC-V instructions to complete (assuming that the
flags are stored in a separate register). Instruction List 2 is an in-
struction sequence for implementing ARM Thumb Signed Greater
Than (its condition is that the N flag is the same as the V flag, and
the Z flag is equal to 0). Branch instructions are so frequent in a
program that the performance will be impacted significantly if each
branch instruction is completed using many instructions.

To use one RISC-V instruction to complete an ARM Thumb
branch instruction without adding additional custom RISC-V in-
structions, the role of RS1 field of RISC-V BEQ (compare the values
of two registers, the branch takes if they are equal) instruction is
modified to represent the condition code (named "cond") of the ARM
Thumb when running an ARM Thumb program. In the execution
stage, the condition code and flags are used to determine whether a
branch is taken. As a result, ARM Thumb branch instructions will
be interpreted as RISC-V BEQ instruction by the binary interpreter.
To support this optimization, the RISC-V processor needs to be
modified: 1) add a hardware logic to judge the flags according to
the cond in the execution stage; 2) pass the RS1 field of the RISC-V
instruction to the execution stage.

Instruction List 2: RISC-V instruction sequence for imple-
menting ARM Thumb Signed Greater Than.

1 ;Load flags to general register
2 CSRRCI R1 , 0 x20c , 0
3 ;Get V flag
4 ANDI R2 , R1 , 0 0 0 1 b
5 ;Get N flag
6 SRLI R3 , R1 , 3
7 ;N==V ? R5=0 : R5=1
8 SUB R5 , R2 , R3
9 SLTU R5 , R0 , R5
10 ;Get Z flag
11 ANDI R4 , R1 , 0 1 0 0 b
12 SRLI R4 , R4 , 2
13 ;(N==V and Z==0) ? R5=0 : R5!=0
14 ADD R5 , R5 , R4
15 ;If R5==0 branch take
16 BEQ R5 , R0 , imm



, Cheng and Huang, et al.

Table 2: ARM Thumb ADDS instruction implementation using RISC-V with and without hardware flags

ARM Thumb instruction RISC-V instruction
Without hardware flags With hardware flags

ADDS Rd,Rn,Rm

ADD R15,Rn,Rm

ADD Rd,Rn,Rm

SLTI R1,R15,0
SLTU R2,R0,R15
XORI R2,R2,1
SLTU R3,R15,Rn
SLTI R5,Rn,0
SLT R6,R15,Rm
XOR R4,R5,R6
ADDI Rd,R15,0

3.4 Conditional Execution
ARM Thumb supports conditional execution, while RISC-V does
not. Unlike the ARM 32-bits ISA, there is a special conditional
execution instruction in the ARM Thumb named IT (If Then). In
the ARM Thumb code, there is an IT block after each IT instruction.
Whether the instruction in the IT block is executed depends on
whether the flags meets the condition set by the IT instruction, if it
does not meet, then this instruction will not be executed but will
be regarded as a NOP instruction.

In ARM Thumb, an 8-bits register named EPSR.IT is used to
support conditional execution. Among them, EPSR.IT[7:5] is used
to save the upper 3 bits of cond, and EPSR.IT[4:0] indicates the
number of instructions in the IT block, up to 4 instructions, and
the least significant bit of cond. More detailed content can refer to
the user manual of ARM Thumb.

Based on the fact that the flags have been implemented by hard-
ware, the conventional method of implementation conditional ex-
ecution in the RISC-V processor is to judge the condition in the
execution stage, and only the instructions that meet the condition
will be executed. However, it will result in a problem, that is if
an ARM Thumb instruction in the IT block requires many RISC-V
instructions to implement and the execution condition of the in-
struction is not meet, these RISC-V instructions will not be executed
but need to be issued to the execution unit, which will cause a large
number of pipeline cycles to be wasted.

For overcoming the performance barrier, the judgment logic
of the execution condition can be put into the binary interpreter.
Like ARM Thumb, an EPSR.IT register is added in the binary in-
terpreter to save the information of IT instruction. Before inter-
preting an ARM Thumb instruction into RISC-V instructions, the
binary interpreter will judge whether the execution condition is
met, and only the instruction that meets the condition will be in-
terpreted. In this way, an instruction that does not be executed
will only cause one-cycle idle. After an ARM instruction is inter-
preted, EPSR.IT advanced by shifting EPSR.IT[4:0] left by 1 bit.
When EPSR.IT[4:0]=5’b00000, it means that the current instruction
is not in an IT block, the instruction is always executed.

4 EXPERIMENT RESULTS
4.1 Supporting ARMv6-M
ARMv6-M is the ISA used in the Cortex-M0 processor, which is a
subset of ARM Thumb but does not support conditional execution.
We develop a demo that supports both ARMv6-M and RISC ISAs
based on the open-source core of PULPino, called Zero-riscy (Ibex)
[1, 2]. Zero-riscy is a 32-bit sequential core with two stages pipeline
and supports I, M, C, and E standard extensions of RISC-V. We
insert a binary interpreter and an instruction buffer in the fetch
stage of Zero-riscy and modify the implementation of its ALU to
support the flags of ARM Thumb. Figure 1 is the block diagram of
the multiple-ISA processor core. The binary interpreter converts an
ARMv6-M instruction into one or more RISC-V instructions, and
the instruction buffer is used to temporarily save the instructions
from the binary interpreter. The size of the instruction buffer is de-
termined by the maximum number of RISC-V instructions required
by an ARM Thumb instruction.

4.2 Benchmarks
In the embedded field, Dhrystone and CoreMark are the most com-
mon benchmarks, so we employe Dhrystone and CoreMark bench-
marks to evaluate the performance of Zero-riscy running ARMv6-M
programs. We use the ARMCC compiler to generate the ARMv6-M
code and GNU GCC compiler to generate the RISC-V code. Table 3
shows the number of instructions executed by the two benchmarks
within their main loop for different ISAs and optimizations.

For Dhrystone with 100 loops, 32711 RISC-V instructions are
executed in the loop of the RISC-V program compiled by GNU GCC,
while 28105 ARMv6-M instructions are executed in the program
compiled by ARMCC. If the ARMv6-M instruction is directly in-
terpreted as RISC-V instruction, 128608 RISC-V instructions are
required, and on average, an ARMv6-M instruction requires 4.58
RISC-V instructions. But, after optimizing the flags, 28105 ARMv6-
M instructions require 52005 RISC-V instructions, and on average
each ARMv6-M instruction requires 1.85 RISC-V instructions. Fi-
nally, one ARM instruction requires 1.62 RISC-V instructions after
optimizing the flags and branch instructions.

Similar to the Dhrystone benchmark, for CoreMark with 1 loop,
the number of RISC-V instructions required to complete 442604
ARMv6-M instructions is reduced from 1963327 to 492766, and the



Efficient Multiple-ISA Embedded Processor Core Design
Based on RISC-V ,

IDE StageIF/
IDE

M
U

X

Decode 
Signals

CSRs

Binary 
Interpreter

IF Stage

RISC-V 
Instruction

Instruction 
From ICache

Register File

Instruction 
Buffer

Figure 1: The block diagram of multiple-ISA processor core based on Zero-riscy, which supports RISC-V and ARMv6-M

Table 3: The number of instructions executed in the main loop of two benchmarks under different ISAs and optimizations.

ISA or Implementation
Benchmarks

Dhrystone (100 loops) CoreMark (1 loop)
Instruction Counts Conversion Ratio Instruction Counts Conversion Ratio

RISC-V Compiled by GCC 32711 306242
ARMv6-M Compiled by ARMCC 28105 442604

Only Binary Interpretation 128608 4.58 1963327 4.44
Optimize Flags 52005 1.85 654065 1.48

Optimize Flags and Branch 45605 1.62 492766 1.11

average number of RISC-V instructions required by each ARMv6-M
instruction is reduced from 4.44 to 1.11.

4.3 Performance
Based on the binary file compiled above, our experiment results
show that the performance of Zero-riscy running Dhrystone and
CoreMark compiled for RISC-V is 0.82 DMIPS/MHz and 1.67 Core-
Mark/ MHz, respectively. And the performance of running the
Dhrystone benchmark compiled by ARMCC is 0.69 DMIPS/MHz,
and CoreMark is 1.22 CoreMark/MHz. Figure 2 shows the detailed
performance of running Dhrystone and CoreMark on Zero-riscy
with different optimizations.

In Figure 2, for the Dhrystone benchmark, the performance
of the multiple-ISA processor running ARMv6-M code without
optimization is only 42% of the performance of running RISC-V code,
while after optimizing flags and branches, it can reach 85%. This
means that the performance of running the ARMv6-M Dhrystone
program increases by 2.01 times. The performance improvement
for running CoreMark is even greater. The performance of running
ARMv6-M CoreMark is increased from 26% of RISC-V performance
to 73%, an increase of 2.80 times.

The result also shows that the optimized performance of Core-
Mark drops more than Dhrystone. The reason is that, as mentioned

0.82 

1.67 

0.34 
0.44 

0.64 

1.00 

0.69 

1.22 

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

Dhrystone（DMIPS/MHz） CoreMark（CoreMark/MHz）

Pe
rf

or
m

an
ce

RISC-V ARMv6-M Without Optimization

ARMv6-M With Optimizing Flags ARMv6-M With Optimizing Branch

Figure 2: The performance of running Dhrystone and Core-
Mark on Zero-riscy.

in the previous section, the number of ARMv6-M instructions in
CoreMark is significantly more than the RISC-V instructions, and
Dhrystone is the opposite. On the other hand, due to the differences
between DhryStone and CoreMark, the proportion of ARMv6-M
instructions interpreted as RISC-V instructions is different. The con-
version ratio of DhryStone is 1.62, while CoreMark is smaller, about
1.11, which causes the performance of DhryStone is still down by
15%, although the number of ARMv6-M instructions is less than
RISC-V.



, Cheng and Huang, et al.

4.4 Hardware Resources
We use the Vivado 2018.3 tool to calculate the LUT and FF resources
consumption of Zero-riscy after synthesis at the same frequency on
the FPGA, and the result is shown in Figure 3. Without supporting
ARMv6-M, the number of LUTs and FFs consumed by Zero-riscy is
3354 and 2006. If the multiple-ISA processor is implemented with-
out any optimization, a binary interpreter and an instruction buffer
will be added in the Zero-riscy, the number of LUTs and FFs will
increase to 3822 and 2039. After optimizing flags by hardware logic,
the number of LUTs drops to 3766, and FFs increases to 2046. In
other words, the optimization of flags logic not only improves per-
formance but also reduces hardware overhead. The reason is that
more RISC-V instructions are required to complete an ARMv6-M in-
struction for the implementation without optimization, which will
lead to the hardware logic of binary interpreter more complicated
and require a larger buffer to store the instruction that transla-
tion from ARMv6-M. Relatively speaking, the hardware flags logic
is much simpler. Of course, in order to optimize branch instruc-
tions, the consumption of hardware resources increased slightly:
the number of LUTs increases by 42 while FFs decreases by 3.

Overall, there is a slight reduction in hardware resources com-
pared to the implementation without any optimization. The number
of LUTs and FFs are increased by 454 and 37 for supporting the
ARMv6-M on Zero-riscy, less than 13.5% of Zero-riscy hardware
resources.

3354
3822 3766 3808

2006 2039 2046 2043

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Only support RISC-V Support ARMv6-M Without
Optimization

Support ARMv6-M With
Optimizing Flags

Support ARMv6-M With
Optimizing Branch

N
um

be
r o

f R
es

ou
rc

es

LUT FF

Figure 3: Hardware resources for Zero-riscy on FPGA.

5 CONCLUSION
In this paper, we study the possibility of running the ARM Thumb
program on the RISC-V processor based on the multiple-ISA pro-
cessor and also propose some optimization methods of hardware
logic for flags, branch instruction, and conditional execution of
ARM Thumb to improve the performance of running ARM Thumb
programs. And a demo that supports both RISC-V and ARMv6-M
ISAs is implemented based on the open-source RISC-V processor
core named Zero-riscy, which proves the feasibility of these meth-
ods. In this example, flags and branch instructions are optimized
to reduce the number of RISC-V instructions required to complete
an ARMv6-M instruction. Finally, on Zero-riscy, for the Dhrystone
code compiled by ARMCC compiler, each ARM Thumb instruction
is translated into 1.62 RISC-V instructions with a performance of
0.69 DMIPS/MHz, 85.0% of the performance of running RISC-V
compiled by GNU GCC compiler, And for the CoreMark code, each
ARM Thumb instruction is translated into 1.11 RISC-V instructions

with a performance of 1.22 CoreMark/MHz, 73.1% of RISC-V. Com-
pared to without any optimization, the performance is improved by
2.01 and 2.80 times respectively while the consumption of hardware
resources is decreased slightly.

6 ACKNOWLEDGEMENT
Thisworkwas supported byHGJ of China (under Grant 2017ZX01028-
103-002), the NSF of China (under Grants 61872374 and 61672526).

REFERENCES
[1] 2019. https://pulp-platform.org.
[2] 2019. https://github.com/lowRISC/ibex.
[3] E. R. Altman, D. Kaeli, and Y. Sheffer. 2000. Welcome to the opportunities of

binary translation. Computer 33, 3 (2000), 40–45.
[4] José A. Baiocchi, Bruce R. Childers, Jack W. Davidson, and Jason D. Hiser. 2013.

Enabling Dynamic Binary Translation in Embedded Systems with Scratchpad
Memory. ACM Trans. Embed. Comput. Syst. 11, 4, Article Article 89 (Jan. 2013),
33 pages. https://doi.org/10.1145/2362336.2399178

[5] F. BELLARD. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceedings
of the annual conference on USENIX Annual Technical Conference, 2005.

[6] BORRILL and PAUL. 2001. Method and apparatus for multiplatform instruction
set architecture. EP1074910.

[7] Fernanda M. Capella, Marcelo Brandalero, Jair Fajardo Junior, Antonio C. S. Beck,
and Luigi Carro. 2013. A Multiple-ISA Reconfigurable Architecture. In 2013 III
Brazilian Symposium on Computing Systems Engineering (SBESC).

[8] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. Bharadwaj Ya-
davalli, and J. Yates. 1998. FX!32 a profile-directed binary translator. IEEE Micro
18, 2 (1998), 0–64.

[9] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas
Kistler, Er Klaiber, and Jim Mattson. 2003. The Transmeta Code Morphing™
Software: Using Speculation, Recovery, and Adaptive Retranslation to Address
Real-Life Challenges. In International Symposium on Code Generation & Opti-
mization.

[10] Kemal Ebcioglu and Erik R. Altman. 1998. DAISY: Dynamic Compilation for
100% Architectural Compatibility. Acm Sigarch Computer Architecture News 25, 2
(1998).

[11] Jair Fajardo, Mateus B. Rutzig, Luigi Carro, and Antonio C.S. Beck. 2012. Towards
a multiple-ISA embedded system. Journal of Systems Architecture the Euromicro
Journal 59, 2 (2012), 103–119.

[12] JOHNW. GOETZ, STEPHENW. MAHIN, and JOHN J. BERGKVIST. 1996. Proces-
sor capable of supporting two distinct instruction set architectures. EP0747808.

[13] Raymond J. Hookway and Mark A. Herdeg. 1997. DIGITAL FX!32: combining
emulation and binary translation.

[14] Weiwu Hu, Wang Jian, Gao Xiang, Yunji Chen, and Guojie Li. 2009. Godson-3: A
Scalable Multicore RISC Processor with x86 Emulation. IEEE Micro 29, 2 (2009),
17–29.

[15] Goh Kondoh andHideaki Komatsu. 2010. Dynamic Binary Translation Specialized
for Embedded Systems. Sigplan Notices - SIGPLAN 45, 157–166. https://doi.org/
10.1145/1837854.1736019

[16] D. Richie and J. Ross. 2014. Cycle-accurate 8080 emulation using an ARM11
processor with dynamic binary translation. In 2014 Twelfth ACM/IEEE Conference
on Formal Methods and Models for Codesign (MEMOCODE). 186–189.

[17] F. Salgado, T. Gomes, J. Cabral, J. Monteiro, and A. Tavares. 2019. DBTOR: A
Dynamic Binary Translation Architecture for Modern Embedded Systems. In
2019 IEEE International Conference on Industrial Technology (ICIT). 1755–1760.

[18] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. 2012. LLBT:
an LLVM-based static binary translator. 51–60. https://doi.org/10.1145/2380403.
2380419

[19] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. 1993. Binary Translation. Communications of the Acm 36, 2 (1993),
69–81.

[20] RYMARCZYK JAMES WALTER, IGNATOWSKI MICHAEL, and
HELLER THOMAS J. 2008. MULTIPLE-CORE PROCESSOR SUPPORT-
ING MULTIPLE INSTRUCTION SET ARCHITECTURES. US2008059769.

[21] Andrew Waterman and Krste Asanović. 2017. The RISC-V Instruction Set Manual
Volume I: User-Level ISA (2.2 ed.).

[22] Y. Yao, Z. Lu, Q. Shi, and W. Chen. 2013. FPGA based hardware-software co-
designed dynamic binary translation system. In 2013 23rd International Conference
on Field programmable Logic and Applications. 1–4.

https://pulp-platform.org
https://github.com/lowRISC/ibex
https://doi.org/10.1145/2362336.2399178
https://doi.org/10.1145/1837854.1736019
https://doi.org/10.1145/1837854.1736019
https://doi.org/10.1145/2380403.2380419
https://doi.org/10.1145/2380403.2380419

	Abstract
	1 Introduction
	2 Related Work
	3 Support ARM Thumb with RISC-V
	3.1 Register Mapping
	3.2 Condition Flags
	3.3 Branch Instructions
	3.4 Conditional Execution

	4 Experiment Results
	4.1 Supporting ARMv6-M
	4.2 Benchmarks
	4.3 Performance
	4.4 Hardware Resources

	5 Conclusion
	6 Acknowledgement
	References

