Automatic Code Generation for Rocket Chip RoCC Accelerators

Pengcheng Xu
jsteward@pku.edu.cn
Peking University

ABSTRACT

Heterogeneous SoCs that are coupled with accelerators are becom-
ing prevalent for various deep learning applications thanks to their
outstanding flexibility and performance. However, programming
for these platforms remains hard due to their low-level program-
ming interface and complex memory systems. Meanwhile, auto-
matic code generation for tensor programs provides reasonable
performance with great accessibility and flexibility. In this work,
we bring these two topics together by proposing a flow of auto-
matic code generation for heterogeneous SoCs. We present how to
implement the proposed flow using TVM for RoCC. We also de-
velop a performance evaluation platform to enable practical auto-
matic code generation on embedded devices. Experiments using
TVM for the Gemmini GEMM accelerator demonstrate that the
generated code achieves a peak of 25.24 GIOPS under 100 MHz
clock and a best-case 3.6x speedup compared to the hand-tuned
kernels from Gemmini developers.

CCS CONCEPTS

« Software and its engineering — Domain specific languages; «
Computer systems organization — Reduced instruction set
computing; - Hardware — Hardware accelerators.

KEYWORDS
RISC-V, Accelerators, Automatic Code Generation, TVM

1 INTRODUCTION

FPGA-based accelerators have become prevalent for various deep
learning training and inference workloads [5] [31] [35]. Heteroge-
neous System-on-Chip (SoC) designs that target deep learning ap-
plications, such as image classification, object detection, tracking,
and voice recognition, tend to use accelerators coupled with a CPU
to minimize the latency and maximize the throughput for these
tasks [13] [33] [14]. Such a design paradigm excels in flexibility and
can offer decent performance for various emerging applications.
The Rocket Chip [3] project is an extensible SoC generator frame-
work that allows users to easily build such a system with a RISC-V
CPU and a custom accelerator through the Rocket Custom Copro-
cessor interface, also known as RoCC. Multiple novel designs of
accelerators with the RoCC interface for common workloads such
as matrix multiplication [15], vector extensions [17], and cryptog-
raphy [28], are available through the Chipyard project [24]. It is
also possible to design custom accelerators for specific workloads
using Chisel infrastructure [2] [6].

The hardware accelerator requires high-performance, low-level
software to release its computing power to the fullest. For exam-
ple, the NVDLA [37] exposes a complicated register interface [12]
for precise control of its hardware functional units. However, it

Yun Liang
ericlyun@pku.edu.cn
Peking University

is challenging to develop efficient software for complex heteroge-
neous systems. The software needs to map the computation into
low-level interfaces of the accelerator. It is apparent that the map-
ping process directly affects the overall throughput and latency
of the system. However, most of the current designs only provide
a low-level programming interface. This requires application de-
signers to manually write programs using low-level programming
languages such as C, which poses a significant burden on the appli-
cation developers. It also severely limits the capability to explore
the schedule space thoroughly.

Meanwhile, automatic code generation is gaining increasing at-
tention recently [18] [26] [30]. Recent works such as Halide [22]
and TVM [10] introduces the paradigm of separating computation
definition and optimization schedules to simplify the programming
and optimization. With a common Intermediate Representation
(IR), these frameworks enable efficient computation kernel gener-
ation for diverse hardware platforms such as CPUs, DSP, GPUs,
and VTAs [19]. The decoupling of schedules and computation also
makes automatic exploration of the schedule space for an optimal
configuration possible. AutoTVM [11], as part of TVM, generates
optimal kernels by iteratively exploring the parameters and tuning
the parameters in a closed feedback loop. In each tuning round, a
kernel is generated and tested on the target device for quality. The
framework then uses learning algorithms [8] to digest the measure-
ments and use them to instruct further tuning. Recently, FlexTen-
sor also allows automatic search of schedule spaces in addition to
parameters, which further enlarges the design space and improves
the overall performance [36].

On the other hand, heterogeneous SoCs with dedicated acceler-
ators are widely used for edge computing and Internet of Things
(IoT) domains. In general, these bare-metal devices often do not
have sophisticated operating systems to abstract and manage the
peripherals bare-metal. This poses great challenges for automatic
code generation because such a system does not provide the high-
level abstractions for the hardware; thus, the programmers have
to handle them manually. Besides, due to limited I/O available on
these platforms, it is hard to interface with the device to perform
automatic code generation, profiling, or measurement.

In this work, we propose an automatic code generation frame-
work for the family of RoCC accelerators. We specialize the process
of offloading computation to external procedures, also known as
tensorization, to take the characteristics of RoCC-based accelera-
tors into consideration. We structure the computation performed
on the accelerator as tensor intrinsics to express the data flow pat-
tern of RoCC accelerators. To realize practical auto-tuning required
for automatic code generation on these RoCC platforms, we exploit
the shared memory capability found on popular FPGA platforms
to implement efficient code evaluation. Such FPGA platforms pro-
vide high-speed access to the memory of the programmable logic
via a host processor. We make use of this capability to work around

Target Code Generation

NN Specification Schedule Template

Operator Definition Concrete Schedule

Nested Loop Program

Target-specific
Tensor Intrinsic

/

RISC-V RoCC Program

Evaluation System

RISC-V
Auto Tunin, ARM Heterogeneous
g RPC Server S(%C

Figure 1: Automatic code generation framework for RoCC accelerators.

the communication bandwidth bottleneck between the code gen-
eration server and evaluation systems. Contributions of this work
are:

e We propose a flow of automatic code generation with ten-
sorization for the family of RISC-V RoCC-based accelera-
tors.

o We formulate the design of tensor intrinsics for such accel-
erators.

e We present an efficient evaluation system for auto-tuning
during code generation for such accelerators.

Experiments using TVM to generate code for the Gemmini GEMM
accelerator shows that the generated code has consistent and com-
parable performance to the hand-tuned kernels provided by Gem-
mini developers, with a peak performance of 25.14 GIOPS under
100 MHz clock and best-case speedup of 3.6x.

2 BACKGROUND AND MOTIVATION

2.1 RoCC Overview

The Rocket Chip Coprocessor (RoCC) is a special feature of the
Rocket Chip SoC generator to integrate custom coprocessors into
the SoC. RoCC specifies an interface between the CPU core and
the coprocessor. The CPU controls the accelerator via a custom
instruction opcode reserved for RoCC, which is sent to the accel-
erator. The accelerator accesses system memory coherently, either
via the TileLink [29] on-chip bus or over a simple interface to the
CPU L1 data cache. The RoCC interface is ideal for accelerators
that couple closely to the CPU in heterogeneous SoC designs com-
pared to traditional Memory-mapped I/O (MMIO) together with
Direct Memory Access (DMA) engines due to the elimination of
typical peripheral bus protocol overheads.

2.2 Automatic Code Generation

Traditional flows of writing software for hardware accelerators re-
quire the programmers to manually transform the code, which is
tedious and error-prone. Halide [22] allows users to specify the
computation definition and schedule definition separately to solve
this problem. The computation rules, expressed as lambda expres-
sions, define the basic structure of the resulting nested loop pro-
gram. The optimizations are structured as schedule that perform
loop transformations. This paradigm dramatically eases the devel-
opment of computation kernels, lifting the repetitive task off the
developers’ shoulders. TVM [10] takes the idea of Halide a level

further with general support for specialized hardware accelerators.
TVM supports expressing computation opaque to the TVM Do-
main Specific Language (DSL) in terms of tensor intrinsics that de-
note special hardware operations. The tensor intrinsics are imple-
mented in C to perform the actual computation. The user uses the
tensorize schedule to mark a part of a computation to be per-
formed by the tensor intrinsic. Calls to the intrinsic functions for
accelerator calls are then emitted during code generation.

All possible schedules of a kernel form the schedule space. One
way to find the optimal schedule introduced by the code generation
framework is to search the schedule space. AutoTVM, part of TVM,
does so iteratively for an efficient schedule. The AutoTVM frame-
work consists of a compile server that generates the code for the tar-
get, runners that evaluates the generated code, and a set of tuning
algorithms that accepts the performance readings and instructs fur-
ther code generation. Automatic code generation frameworks en-
able quick interface with popular deep learning frameworks. TVM,
for example, allows the user to directly import models from deep
learning frameworks that support the Relay IR [25] format, such
as PyTorch [21], TensorFlow [1], or MXNet [9]. The user can either
choose existing or write custom models in the deep learning frame-
work. The framework then generates efficient code by auto-tuning
the applications for the target hardware. Compared to the manual
design flow, this greatly improves productivity.

2.3 Performance Evaluation for SoCs

Performance evaluation on SoC platforms is not trivial. It is not
possible to use modern operating systems on these platforms due
to resource limits. Thus, a bare-metal runtime that handles com-
munication and provides basic facilities is needed. pTVM [4], a
recent addition to the TVM framework, provides a minimal run-
time for executing TVM modules on the target devices. The project
currently uses OpenOCD, the prevalent debug translator for em-
bedded devices, to bridge TVM with the evaluation devices. The
host and device talk over the Joint Test Action Group (JTAG) de-
bug protocol, which is widely used across device manufacturers.
SoCs often use hierarchical memory to improve performance. In
the meantime, most deep learning accelerators tend to coalesce
memory transactions to improve performance, making it difficult
to accurately model cache behavior and overall performance for
the resulting system. Automatic code generation circumvents this
situation by measuring the end-to-end execution time of the pro-
gram, which implicitly takes cache operation into consideration.

3 AUTOMATIC CODE GENERATION FOR
ROCC ACCELERATOR

3.1 Overview

The proposed automatic code generation framework for RoCC ac-
celerators is shown in Figure 1. To generate code of a DNN for the
accelerator, the user needs to provide the NN specification with one
of the supported deep learning frameworks such as TensorFlow or
MXNet. They also need to provide the schedule template for possi-
ble optimizations. The code generation framework creates operator
definitions for the computation kernels and picks a concrete sched-
ule from the schedule space to generate the nested loop program
IR. Then, the framework offloads computation to the accelerator
per the user specified with the target-specific tensor intrinsic imple-
mentation. Specifically, the framework transforms the IR, replac-
ing loop levels marked by the schedule with calls to the intrinsics
to perform accelerator operations. The framework then lowers the
IR into C program and creates RoCC-enabled target binary of the C
program with RISC-V GCC. Finally, the auto-tuning system sends
the binary to the evaluation system and uses the performance read-
ings to pick the schedule for the next tuning round.

3.2 Intrinsic Design

With the ability to call external C functions in code generation
frameworks, it is straightforward to embed accelerator calls in the
generated code as intrinsics. However, due to accelerators in het-
erogeneous SoCs exposing their ISA with granularity that differs
significantly from design to design, it is crucial to design a intrin-
sic properly for high-performance code. In RoCC-based accelerator
designs, the ISA usually exposes explicit data movement instruc-
tions into and out of the accelerator memory. Such a pattern sug-
gests that the natural structure of the intrinsics should be in the
form of three procedures, “reset-update-finalize”, to represent the
three phases of accelerator operation:

(1) For an output region, the reset function is called first to ini-
tialize the output region in SoC memory.

(2) The update function then combines the partial results of pre-
vious computation calls for the current output region with
this round’s input data to produce the output.

(3) Finally, at the end of the intrinsic, the finalize function is
called to move output from the accelerator back to the main
memory.

For the computation of a specific region, the partial results do
not need to be transferred back to SoC memory in each round but
can stay in the accelerator memory. As memory movements are
taking time on par with computation in accelerators, this is crucial
for generating efficient code. Most DNN kernels have their input
tiled in a system with hierarchical memory [20]. RoCC accelera-
tors usually rely on the RISC-V CPU to perform tiling in order
to fit data inside accelerator memory. This results in hard limits
for the dimensions of data the intrinsic can handle; violating these
constraints would result in invalid generated code. We enforce the
constraints posed by accelerator memory size limits during code
generation. The user shall specify the constraints the device re-
quires in the intrinsic declaration. The code generation framework

checks that the input and output shapes of the intrinsic conform
to the constraints before proceeding to actual code generation.

3.3 Barrier Instruction

RoCC-based accelerator designs require explicit synchronization
to guarantee data transaction completion. This results in an asyn-
chronous memory access pattern: for the CPU to access memory
just written back from the accelerator, the software needs to insert
barrier instructions to force the memory operations to become visi-
ble to the CPU. The code generation process needs to take this into
consideration.

Two possible approaches exist to emit the required barrier in-
struction. One is to fuse the barriers into the finalize stage of the
intrinsic, resulting in an implicit barrier for each output region. The
other approach is to provide separate control over when to emit the
barrier instruction by using the code block annotation feature of
the code generation framework. The user annotates that a barrier
instruction should be inserted at the end of the DNN kernel. These
two approaches also result in different performance. The first ap-
proach would result in unnecessary barrier instructions in the gen-
erated code, which will impact performance due to the introduced
excessive waiting and unneeded CPU stalls. This effect may get
worse if the RISC-V CPU has more than one core due to the mem-
ory ordering requirement the barrier instruction poses on them.
The latter approach circumvents this by providing greater flexibil-
ity and better control over barrier insertion. This leads to better
performance in generated code for allowing parallel functioning
of the memory access units and the computation logic. The user
may even choose to omit the barrier to seek for cross-kernel asyn-
chronous memory operations as an optimization.

3.4 An Example of Generated Kernel

Listing 1 gives the pseudo-code for a generated GEMM kernel with
input sizes of 512x 512X 512 using our flow. The core computation
logic in GEMM, the multiply-add operation, is delegated to the in-
trinsic stage matmul_kernel.matmul_reset andmatmul_finalize
operates on the output region for data movement. The matrix axes
are split into 8 X 64, with the axis of extent 64 bound to the in-
trinsic. We pass 512 to the intrinsic as matrix access stride. We
follow the explicit barrier approach described in Section 3.3. The
attr pragma_epilogue attribute line marks that one memory fence
instruction is required after the i. o loop. If we choose the implicit
approach and fuse the fence instruction in matmul_finalize, a
total of 64 barrier instructions will be issued during kernel exe-
cution (two levels of loop i.0, j.o of extent 8). This means more
synchronization between memory and the accelerator and worse
performance.

4 PERFORMANCE EVALUATION ON
ACCELERATORS

Automatic code generation requires evaluation of the generated
code to acquire feedback on its quality. Such feedback is not only
crucial for choosing the best configuration but affects the search
process as well. In this section, we propose an efficient communi-
cation scheme between the code generation host and target device

produce C {
// attr pragma_epilogue = "do_fence”
for (i.o, 0, 8) {
for (j.o, 0, 8) {
matmul_reset(access_ptr(C), 512)
for (k.o, @, 8) {
matmul_kernel(access_ptr(A), access_ptr(B),
— access_ptr(C), 512, 512, 512)}
matmul_finalize(access_ptr(C), 512)3}}}

Listing 1: Simplified version of an example GEMM ker-
nel. The target is expected to provide matmul_reset,
matmul_kernel, matmul_finalize, and do_fence as C func-
tions.

for efficient evaluation during code generation. We present the de-
sign of the Rocket Chip-based evaluation platform as an implemen-
tation of the proposed communication scheme.

4.1 Communication Scheme

Code generation frameworks feature device-host interfaces to per-
form arbitrary code evaluation on bare-metal devices shown in
Listing 2. Previous implementations of the interface have a low
bandwidth between the host and device can quickly become the
bottleneck of code generation.

/* Read num_bytes from addr into buffer x/

void Read(Ptr addr, void *buffer, size_t num_bytes);
/* Write num_bytes to addr from buffer */

void Write(Ptr addr, const void xbuffer, size_t

— num_bytes);

/* Start execution at func_addr and return at

— stop_addr */

void Execute(Ptr func_addr, Ptr stop_addr);

Listing 2: Functions required for the yTVM device interface.
Ptr denotes a pointer in the target device’s memory. void *
denotes a pointer on the compile server.

We propose an implementation of the host-device interface for
accelerators hosted on heterogeneous FPGA platforms. An exam-
ple of such a platform would be Xilinx Zynq, which has fabricated
ARM CPU cores built into the same die as the FPGA. Such plat-
forms enable mutual high-speed access to the system memory from
both the FPGA and the host ARM processor [27] [23]. The fast inter-
face improves code evaluation throughput and shortens the time
for creating an optimal DNN kernel with AutoTVM. With shared
memory, the Read and Write functions of the interface are natu-
rally expressed as coherent reads and writes to the host processor’s
memory. The Execute function is implemented with the help of
the monitor software that runs on the target CPU.

4.2 Hardware and Software System

The SoC platform for code evaluation is based on the Rocket Chip
SoC generator, featuring a single 64-bit Rocket Chip CPU core with

Zynq Host Processor Rocket Chip SoC

AXI UART RoCC Accelerator
RPC Request 16550 Rocket | || -
----------- > ARM CPU DMA Engine

CPU

Processing

L Elements
l Scratchpad

GPIO

f

I

l

!

DRAM

L2 Inclusive Cache ‘

AXI4 |

Figure 2: Block diagram for the evaluation platform in
FPGA.

virtual memory support. An inclusive last-level cache (LLC) imple-
mentation from SiFive is included to explore the cached memory
access behaviors discussed in Section 2.3. A UART controller pro-
vides a lightweight communication channel to implement the host-
device interface, as described in Section 4.1. The block diagram for
the evaluation platform is shown in Figure 2.

A monitor software is needed on the Rocket Chip SoC to im-
plement the host-device interface. The monitor software is based
on the OpenSBI firmware. On Execute call from the code gener-
ation host, the host ARM processor sends the desired func_addr
and stop_addr to the monitor over the UART link. The monitor
software replaces the instruction at the stop address with an in-
valid opcode, unimp, and jumps to the function address. Once the
code being evaluated runs to stop_addr, the CPU will jump to the
invalid opcode trap handler, which is provided by the monitor soft-
ware. The trap handler then reports the execution time to the host
ARM processor. The run time of the code being evaluated is mea-
sured via the cycle Control and Status Register (CSR) to provide
accurate timing. We run the generated code in S-mode and protect
the monitor code and data with RISC-V Physical Memory Protec-
tion (PMP) [32]. The host ARM processor handles TVM RPC re-
quests from the compiler server over Ethernet and forwards them
to the evaluation platform in FPGA. The host processor software
enforces the control flow of the RISC-V processor via the Rocket
Chip reset signal connected over GPIO. The execution flow of the
host and monitor software is shown in Figure 3.

5 CASE STUDY OF GEMMINI

To evaluate the proposed methodology for RoCC accelerators, we
present the flow of generating code for the Gemmini [15] accelera-
tor as a case study to show the quality of the code generated as well
as the efficiency of the flow. We use TVM [10] as the code genera-
tion framework, with some modifications to implement the flow as
described in Section 3. We test the performance of the code gener-
ated for Gemmini on a Rocket Chip SoC mapped to FPGA, running
at 100 MHz. We implement the test platform described in Section 4
on a Xilinx Zynq UltraScale+ ZCU102 Evaluation Board [34].

5.1 Gemmini Overview

We first briefly describe the data flow design and programming
model of the Gemmini GEMM accelerator. The Gemmini RoCC ac-
celerator implements GEMM with a systolic array structure. The

Host Processor RISC-V DUT

Start RPC Server

Evaluation
v Request
Load Monitor and Shared Memory Setup Execution
Evaluation Code Reset Wire Environment
¢ Run Evaluation |
i Code '
Y l
UART . ;
Wait for DUT Finish Report Feedback to
Host Processor

Figure 3: Execution flow of the host and monitor software.
The box in dotted lines represents generated code from the
compile server. The double lines between the RISC-V Design
Under Test (DUT) and the host processor represents hard-
ware links.

core logic of computation consists of an array of Processing Ele-
ments (PEs). The bias matrix is preloaded into the internal accu-
mulators of the PEs, and the matrices are pushed through the sys-
tolic array, accumulating A x B on top of D. Gemmini includes two
memory regions inside the accelerator, the scratchpad and the ac-
cumulator, for holding input and output data from the PE array.
In the default Gemmini configuration, the scratchpad and accumu-
lator are 256KiB and 64 KiB. Gemmini employs a decoupled-load-
access memory access pattern, providing separate instructions for
computation and data movement. Three main instructions are pro-
vided to perform data movement in two directions and to perform
computation.

Gemmini uses mixed normal RISC-V and custom RoCC instruc-
tions. The RISC-V CPU code handles data partitioning while the
accelerator performs DMA operations and calculation. The DMA
engine operations’ completion is asynchronous to the retire of the
memory access instructions. This memory architecture requires ex-
plicit fence instructions for data consistency. Gemmini provides
a hand-tuned GEMM kernel for applications. Two-levels of input
tiling are performed to saturate accelerator memory with the in-
put and output matrices for the optimal data reuse in accelerator
scratchpad. The kernel is then used to implement a convolution
kernel via the Im2Col [7] transformation. The kernels are used to
implement deep learning applications for the accelerator.

5.2 Implementing the Code Generation Flow

Two sets of constraints apply to the maximum input sizes that can
be handled in one turn for Gemmini. The limitations are due to
two limiting factors, the scratchpad capacity, and the accumulator
capacity. Given the set of hardware customization parameters, we
derive the constraints for input matrix sizes. Assuming that the

30 400.0%

350.0%

300.0%

250.0%

200.0%

Giga I0PS

150.0%

100.0%

50.0%

0.0%

16 32 64 128 256 512 1024
Workload Size

Baseline E== AutoTVM C— Baseline (L2)

B0 AutoTVM (L2) = ===+ Speedup Speedup (L2)

Figure 4: Performance comparison between baseline (hand-
tuned kernel) and AutoTVM-generated results for different
input matrix sizes in terms of Integer Operations Per Sec-
ond (IOPS). Data with label marked “L2” indicates that the
L2 cache in Rocket Chip is enabled. The dotted horizontal
line marks 100% speedup.

input words are w; bits each, the accumulator words are w, bits
each, the scratchpad memory is b bytes, the accumulator memory
is b,y bytes, and the input matrices are of i X j and j X k, the size
constraints for the tensor intrinsic are:

i-k-wa/8 < bg (0
(i-j+j-k) -wi/8 < bs ¢)

With default Gemmini parameters of 8-bit input words, 32-bit
accumulator words, 256 KiB scratchpad, and 64 KiB accumulator,
the maximum input dimensions the accelerator can accept in one
turn Ais 128 x1024 and 1024 x 128 for B. The minimum block size
of the systolic array accepts is 16. We implement the tensor intrin-
sic for a GEMM kernel in C and inline assembly. Besides input with
sizes that match the accelerator memory, inputs that are smaller
than the maximum allowed size are also accepted to explore the
trade-off between accelerator data reuse and cache performance.
The DMA engine of Gemmini supports partial loads that does not
fill a single line of the systolic array. In case the input size is not
divisible by the systolic array dimensions, the generated code is-
sues such partial loads and stores to the DMA engine to provide
padding in the accelerator memory correctly.

5.3 Generated Code Quality

We generate code targeting Gemmini with AutoTVM to verify func-
tionality and performance. We define a simple schedule space that
performs loop axis split on the three axes in GEMM. The hand-
tuned kernel applies the same tiling and reordering optimization,
but with predetermined factors to saturate accelerator memory.
We present the performance comparison results in Figure 4. The
baseline performance is from Gemmini’s provided hand-tuned ker-
nel that saturates the accelerator memory. The AutoTVM kernel is
selected from up to 100 random trials from the schedule space. We
can see that the L2 cache does provide a consistent performance
boost of over 10% across all input sizes.

9.000%

8.000%
§ 7.000%
6.000%
5.000%
4.000%
3.000%
2.000%
1.000%
0.000%

% RoCC Instructi

16 32 64 128 256 512 1024
Workload Size

Baseline ====- AutoTVM

Figure 5: The percent of RoCC instructions in all instruc-
tions executed for different input sizes. The ratio between
RoCC and normal instructions approach a fixed value as in-
put size increases.

We recognize that the AutoTVM-generated kernels show per-
formance on par with the hand-tuned kernel for all input sizes. An
interesting observation is that the generated kernel performs con-
siderably better on smaller inputs. We anticipate that this is due to
the hand-tuned kernel having more overhead in non-computation
parts than the automatically generated version, as the code gen-
eration framework tends to perform inlining and optimizations
more radically. Figure 5 shows the proportion of RoCC instruc-
tions issued to all instructions issued for the generated and hand-
tuned code for different input sizes. We can see that as the input
sizes increase the proportion approaches a fixed value. This ren-
ders the overhead less significant in time consumption as input
size increases, explaining the similar performance for both kernels
on larger inputs.

5.4 Auto-tuning Throughput

We share the early results of the performance of the proposed eval-
uation platform. Figure 6 shows the tuning throughput in terms
of numbers of evaluations per minute for a GEMM kernel on CPU
for different input matrix sizes compared to the original OpenOCD
JTAG implementation. The proposed platform shows significantly
better tuning efficiency compared to the baseline design.

We believe that the improvement is due to the improvement of
efficiency of the communication scheme. The amount of data to
be transferred in each trial is proportional to the square of input
size. A back-of-the-envelope calculation shows that the amount
of data needed for one turn of tuning quickly approaches several
megabytes for larger inputs. This matches what we can see in Fig-
ure 6: as input size increases, the tuning throughput of the OpenOCD
implementation quickly collapses due to bandwidth bound. In the
meantime, the Zynq platform shows stable tuning throughput re-
gardless of workload size due to the surplus bandwidth from the
shared memory system. The proposed evaluation platform design
greatly improves the efficiency of code evaluation, especially for
larger inputs, in auto-tuning on heterogeneous SoC platforms.

60

o
S

50 50
40 40
30

Speedup

20

Tuning Throughput
n w
(=} o

10

=
o

o

16 32 64 128 256

Workload Size

Open0CD Zynq Speedup

Figure 6: Tuning performance comparison between the pro-
posed Zynq platform and the OpenOCD JTAG platform. The
tuning throughput is shown in trials per minute.

6 RELATED WORK

The introduction of closely-coupled accelerators with RoCC greatly
extends the frontier of hardware-accelerated processing by allow-
ing easy addition to the processor ISA. Besides Gemmini discussed
in this work, Hwacha [17] introduces a new vector architecture
for elegant, performant, and energy-efficient vector processing on
modern data-parallel architectures. The SHA3 RoCC accelerator
[28] enables high-performance secure hash calculation on embed-
ded platforms. SMURF [6] brings hardware-accelerated Variable
Precision (VP) Floating Point (FP) for high-performance comput-
ing servers as an alternative to VP FP software routines.

Besides the pattern in TVM of the user providing operator def-
inition and schedule instructions, automatic code generation can
have different approaches. Glow [26] lowers the traditional neural
network dataflow graph into a two-phase strongly-typed interme-
diate representation, allowing the optimizer to perform domain-
specific optimizations. The MLIR [16] project defines a common
intermediate representation (IR) that unifies the infrastructure re-
quired to execute high-performance machine learning models in
TensorFlow [1] and similar ML frameworks. yTVM [4] first intro-
duced and implemented the host-device interface described in Sec-
tion 4.1. In yTVM’s implementation, the host uses OpenOCD with
JTAG or other debug protocols to implement the interface func-
tions. TVM also offers an RPC interface to communicate with more
powerful targets such as Android devices to perform code evalua-
tion.

7 CONCLUSION

In this work, we introduced the paradigm of automatic code gen-
eration for RoCC accelerators. We validated the feasibility of the
proposed flow via a case study of code generation for the Gemmini
accelerator with TVM. We also presented an efficient evaluation
platform design to make auto-tuning for heterogeneous platforms
realistic for real-world applications. We hope that this will open
the possibilities of automatic code generation for accelerators in
the RISC-V ecosystem.

REFERENCES

[1] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

(3

[4

[10

[11

[12

[13

[14

[15

=

]

]

]

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. https://www.tensorflow.org/ Software available from tensor-
flow.org.

Tutu Ajayi, Khalid Al-Hawaj, Aporva Amarnath, Steve Dai, Scott Davidson, Paul
Gao, Gai Liu, Anuj Rao, Austin Rovinski, Ningxiao Sun, Christopher Torng, Luis
Vega, Bandhav Veluri, Shaolin Xie, Chun Zhao, Ritchie Zhao, Christopher Bat-
ten, Ronald G. Dreslinski, Rajesh K. Gupta, Michael Bedford Taylor, and Zhiru
Zhang. 2017. Experiences Using the RISC-V Ecosystem to Design an Accelerator-
Centric SoC in TSMC 16 nm. First Workshop on Computer Architecture Research
with RISC-V (CARRV 2017) (2017).

Krste Asanovi¢, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup
Lee, Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Al-
bert Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

The TVM authors. 2019. [RFC][MicroTVM] Bringing TVM to Bare-Metal Device.
https://github.com/apache/incubator-tvm/issues/2563

Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gordon R.
Chiu. 2017. An OpenCLTM Deep Learning Accelerator on Arria 10. In Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’17). Association for Computing Machinery, New York, NY,
USA, 55-64. https://doi.org/10.1145/3020078.3021738

Andrea Bocco, Yves Durand, and Florent De Dinechin. 2019. SMURF: Scalar
Multiple-Precision Unum Risc-V Floating-Point Accelerator for Scientific Com-
puting. In Proceedings of the Conference for Next Generation Arithmetic 2019
(CoNGA’19). Association for Computing Machinery, New York, NY, USA, Ar-
ticle Article 1, 8 pages. https://doi.org/10.1145/3316279.3316280

Kumar Chellapilla, Sidd Puri, and Patrice Simard. 2006. High Performance Con-
volutional Neural Networks for Document Processing. In Tenth International
Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1.
Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’16). Association for Computing Machin-
ery, New York, NY, USA, 785-794. https://doi.org/10.1145/2939672.2939785
Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and Efficient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv:cs.DC/1512.01274

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578—
594. https://www.usenix.org/conference/osdi18/presentation/chen

Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 3393-3404.

NVIDIA Corporation. 2019. Scalability parameters and ConfigROM - NVDLA
Open Source Project. http://nvdla.org/hw/v2/scalability.html

G. Desoli, N. Chawla, T. Boesch, S. Singh, E. Guidetti, F. De Ambroggi, T. Majo, P.
Zambotti, M. Ayodhyawasi, H. Singh, and N. Aggarwal. 2017. 14.1 A 2.9TOPS/W
deep convolutional neural network SoC in FD-SOI 28nm for intelligent embed-
ded systems. In 2017 IEEE International Solid-State Circuits Conference (ISSCC).
238-239. https://doi.org/10.1109/ISSCC.2017.7870349

Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating NVIDIA
Deep Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. 2019 2nd
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Em-
bedded Applications (EMC2) (Feb 2019). https://doi.org/10.1109/emc249363.2019.
00012

Hasan Genc, Ameer Haj-Ali, Vighnesh Iyer, Alon Amid, Howard Mao, John
Wright, Colin Schmidt, Jerry Zhao, Albert Ou, Max Banister, Yakun Sophia Shao,

[16]

(17]

=
&

[19

[20

[21]

[22

I
&

[24

[25

[26

[28

[29

[30

[31

Borivoje Nikolic, Ion Stoica, and Krste Asanovic. 2019. Gemmini: An Agile Sys-
tolic Array Generator Enabling Systematic Evaluations of Deep-Learning Archi-
tectures. arXiv:cs.DC/1911.09925

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2020. MLIR: A Compiler Infrastructure for the End of Moore’s
Law. arXiv:cs.PL/2002.11054

Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovi¢, and K.
Asanovi¢. 2014. A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V pro-
cessor with vector accelerators. In ESSCIRC 2014 - 40th European Solid State
Circuits Conference (ESSCIRC). 199-202. https://doi.org/10.1109/ESSCIRC.2014.
6942056

Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. 2019. A
Coordinated Tiling and Batching Framework for Efficient GEMM on GPUs. In
Proceedings of the 24th Symposium on Principles and Practice of Parallel Program-
ming (PPoPP ’19). Association for Computing Machinery, New York, NY, USA,
229-241. https://doi.org/10.1145/3293883.3295734

Thierry Moreau, Tiangi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin
Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Kr-
ishnamurthy. 2018. A Hardware-Software Blueprint for Flexible Deep Learning
Specialization. arXiv:cs.LG/1807.04188

N.Park, B. Hong, and V. K. Prasanna. 2003. Tiling, block data layout, and memory
hierarchy performance. IEEE Transactions on Parallel and Distributed Systems 14,
7 (July 2003), 640-654. https://doi.org/10.1109/TPDS.2003.1214317

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (Eds.). Curran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. SIGPLAN Not. 48, 6 (June 2013), 519-530. https://doi.org/10.1145/
2499370.2462176

V. Rajagopalan, V. Boppana, S. Dutta, B. Taylor, and R. Wittig. 2011. Xilinx Zyng-
7000 EPP: An extensible processing platform family. In 2011 IEEE Hot Chips 23
Symposium (HCS). 1-24. https://doi.org/10.1109/HOTCHIPS.2011.7477495
Berkeley Architecture Research. 2020. Chipyard Documentation. https:
//chipyard.readthedocs.io/_/downloads/en/latest/pdf/

Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh Pollock, Marisa Kirisame,
Tiangi Chen, and Zachary Tatlock. 2018. Relay: a new IR for machine learning
frameworks. Proceedings of the 2nd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages - MAPL 2018 (2018). https://doi.
org/10.1145/3211346.3211348

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, Jack Montgomery, Bert Maher, Satish Nadathur, Jakob Olesen, Jongsoo
Park, Artem Rakhov, Misha Smelyanskiy, and Man Wang. 2018. Glow: Graph
Lowering Compiler Techniques for Neural Networks. arXiv:cs.PL/1805.00907
Mohammadsadegh Sadri, Christian Weis, Norbert Wehn, and Luca Benini. 2013.
Energy and Performance Exploration of Accelerator Coherency Port Using Xil-
inx ZYNQ. In Proceedings of the 10th FPGAworld Conference (FPGAworld ’13).
Association for Computing Machinery, New York, NY, USA, Article Article 5,
8 pages. https://doi.org/10.1145/2513683.2513688

Colin Schmidt and Adam Izraelevitz. 2013. A Fast Parameterized SHA3 Acceler-
ator. https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/
reports/project11_report.pdf

SiFive. 2017. SiFive TileLink Specification.
tilelink/tilelink-spec- 1.7-draft.pdf

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and
Albert Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-
Performance Machine Learning Abstractions. arXiv:cs.PL/1802.04730

C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou. 2017. DLAU: A Scalable
Deep Learning Accelerator Unit on FPGA. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36, 3 (March 2017), 513-517. https:
//doi.org/10.1109/TCAD.2016.2587683

Andrew Waterman and Krste Asanovi¢. 2019.
Manual - Volume II: Privileged Architecture.
privileged-isa/

P.N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G. Wei. 2017. 14.3 A
28nm SoC with a 1.2GHz 568n]/prediction sparse deep-neural-network engine

https://static.dev.sifive.com/docs/

The RISC-V Instruction Set
https://riscv.org/specifications/

https://www.tensorflow.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://github.com/apache/incubator-tvm/issues/2563
https://doi.org/10.1145/3020078.3021738
https://doi.org/10.1145/3316279.3316280
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/cs.DC/1512.01274
https://www.usenix.org/conference/osdi18/presentation/chen
http://nvdla.org/hw/v2/scalability.html
https://doi.org/10.1109/ISSCC.2017.7870349
https://doi.org/10.1109/emc249363.2019.00012
https://doi.org/10.1109/emc249363.2019.00012
http://arxiv.org/abs/cs.DC/1911.09925
http://arxiv.org/abs/cs.PL/2002.11054
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1145/3293883.3295734
http://arxiv.org/abs/cs.LG/1807.04188
https://doi.org/10.1109/TPDS.2003.1214317
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1109/HOTCHIPS.2011.7477495
https://chipyard.readthedocs.io/_/downloads/en/latest/pdf/
https://chipyard.readthedocs.io/_/downloads/en/latest/pdf/
https://doi.org/10.1145/3211346.3211348
https://doi.org/10.1145/3211346.3211348
http://arxiv.org/abs/cs.PL/1805.00907
https://doi.org/10.1145/2513683.2513688
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/reports/project11_report.pdf
https://people.eecs.berkeley.edu/~kubitron/courses/cs262a-F13/projects/reports/project11_report.pdf
https://static.dev.sifive.com/docs/tilelink/tilelink-spec-1.7-draft.pdf
https://static.dev.sifive.com/docs/tilelink/tilelink-spec-1.7-draft.pdf
http://arxiv.org/abs/cs.PL/1802.04730
https://doi.org/10.1109/TCAD.2016.2587683
https://doi.org/10.1109/TCAD.2016.2587683
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/

[34

[35]

[36]

[37]

with >0.1 timing error rate tolerance for IoT applications. In 2017 IEEE Interna-
tional Solid-State Circuits Conference (ISSCC). 242-243. https://doi.org/10.1109/
ISSCC.2017.7870351

Xilinx. [n. d.]. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. https://www.
xilinx.com/products/boards-and-kits/ek-ul-zcu102-g.html

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
2015. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neu-
ral Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’15). Association for Computing Ma-
chinery, New York, NY, USA, 161-170. https://doi.org/10.1145/2684746.2689060
Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flex-
Tensor: An Automatic Schedule Exploration and Optimization Framework for
Tensor Computation on Heterogeneous System. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS "20). Association for Computing Machin-
ery, New York, NY, USA, 859-873. https://doi.org/10.1145/3373376.3378508

G. Zhou, J. Zhou, and H. Lin. 2018. Research on NVIDIA Deep Learning Ac-
celerator. In 2018 12th IEEE International Conference on Anti-counterfeiting, Se-
curity, and Identification (ASID). 192-195. https://doi.org/10.1109/ICASID.2018.
8693202

https://doi.org/10.1109/ISSCC.2017.7870351
https://doi.org/10.1109/ISSCC.2017.7870351
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1109/ICASID.2018.8693202
https://doi.org/10.1109/ICASID.2018.8693202

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 RoCC Overview
	2.2 Automatic Code Generation
	2.3 Performance Evaluation for SoCs

	3 Automatic Code Generation for RoCC Accelerator
	3.1 Overview
	3.2 Intrinsic Design
	3.3 Barrier Instruction
	3.4 An Example of Generated Kernel

	4 Performance Evaluation on Accelerators
	4.1 Communication Scheme
	4.2 Hardware and Software System

	5 Case Study of Gemmini
	5.1 Gemmini Overview
	5.2 Implementing the Code Generation Flow
	5.3 Generated Code Quality
	5.4 Auto-tuning Throughput

	6 Related Work
	7 Conclusion
	References

