
Experiment on Replication of Side Channel Attack
via Cache of RISC-V Berkeley Out-of-Order

Machine (BOOM) Implemented on FPGA
Anh-Tien Le∗, Ba-Anh Dao∗, Kuniyasu Suzaki†, Cong-Kha Pham∗

Anh-Tien Le, Ba-Anh Dao, Kuniyasu Suzaki, Cong-Kha Pham
∗The University of Electro-Communications (UEC), Tokyo, Japan

†Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture (TRASIO)
Email: {leanhtien,daobaanh}@vlsilab.ee.uec.ac.jp, k.suzaki@aist.go.jp, phamck@uec.ac.jp

Abstract—In this work, we start by describing the implementa-
tion and benchmark of the BOOM processor (RISC-V Berkeley
Out-of-Order Machine) on an FPGA board ZC706. Then com-
pare the result with the RISC-V in-order scalar processor the
Rocket Core. Subsequently, we demonstrate a side-channel attack
that exploits some characteristics of an Out-of-Order processor in
general and the BOOM processor in particular. The experiment
would be a premise for constructing a custom heterogeneous
processor.

Index Terms—RISC-V, side-channel attack, Out-of-Order pro-
cessor

I. INTRODUCTION

In recent years, RISC-V [1] is developed as a new instruc-
tion set architecture that is available under open, free and
non-restrictive licenses. It is designed to encourage computer
architecture researches, educations and be supported by large
industries including chip and device makers. The RISC-V
ecosystem enables a new level of innovation in processor
architecture that will be a crucial driver for the needed gains
in performance and power efficiency over the next decade.
One of the advantages of RISC-V is its simplicity and much
smaller than other commercial general-purpose ISAs but still
captures significant details. It also supports both 32-bit and
64-bit address space variants for applications, operating system
kernels and hardware implementations. Consequently, both in-
order and out-order processors have been studied and designed
based on the RISC-V architecture.

The Out-of-Order processor provides a dynamically
rescheduling mechanism that utilizes the full chip’s resources
to improve the computer’s performance. The University of
California, Berkeley, has been developing and maintaining an
open-source synthesizable parameterized out-or-order RISC-
V processor [2], called “BOOM”. It contributes a practical
environment for researching the execution and security of the
RISC-V micro-architecture. In Fig.1, the BOOM pipeline is
divided into ten stages. The fetch stage gets instructions from
the processor’s memory and pushes into the Fetch Buffer,
a FIFO queue. From this queue, the commands are pulled
out and converted into the ”micro-ops” in the decode stage.
The rename stage converts the ISAs into ”physical” register

specifiers. In the dispatch stage, the ”micro-ops” are written
into the Issue stage including a queue which they would stay
on and wait for all of the instructions are ready. The Out-
of-Order execution begins with the ”micro-ops” loading their
register operands from the Physical Register File and then
be executed to write/read the memory. The efficiency of the
BOOM’s architecture will be evaluated in the latter part of
this paper.

In contrast, the Rocket core [3] is a micro-architecture of
an in-order scalar RISC-V processor with a 32-bit instruc-
tion format. It contains a six-stage pipeline, has one integer
ALU and an optional FPU. An accelerator or co-processor
interface, called RoCC, is also provided. It is able to produce
a set of processor core designs, with different configuration
parameters. The Rocket core is also provided with a library
of processor components, which make it suitable for study to
design a custom RISC-V processor.

In early 2018, the computer industry has convulsively
discussed two newly discovered serious security flaws that
have been identified within computer processors called melt-
down [4] and spectre [5]. These dangerous security holes
permit adversaries to abduct the critical information which
could currently be processed on the memory of modern high-
performance processors. This information might include a
private key from a cryptography program performing encryp-
tion or a lot of user’s private information such as passwords,
messages or important documents. On the one hand, Melt-
down exploits the vulnerability in Intel processors. They are
compromised when implementing the Out-of-Order execution
which could allow the hackers to get through the hardware-
wall between user-level software and the core memory of the
computer. On the other hand, the spectre takes advantage of the
speculative execution mechanism of many modern processors
to delude an error-free application into giving up the private
information. Since the Berkeley Out-of-Order processor is an
open-source project, it is undoubtedly a convenient system to
inspect and demonstrate those attacks to evaluate the Out-
of-Order architecture security [6]. The experiments will be
presented in part III of this paper.

Fig. 1: BOOM pipeline [7]

II. IMPLEMENTATION OF BOOM ON FPGA AND
BENCHMARKS

In our works, we used an FPGA development board called
Xilinx SoC ZC706 to implement, debug, assess and bench-
mark the performance of the BOOM processor. This evaluation
board is based on the Zynq®-7000 SoC developed by Xilinx
company [8]. It combines both programmable FPGA circuitry
and an ARM-based processor. The BOOM processor is im-
plemented on the board and booted with the SW11 SD Boot
mode. Firstly, a simple operating system would be booted and
run on the ARM processor. For communicating between the
host ARM machine and the RISC-V BOOM core, a front-end
server library is demanded, which also provides an interface to
execute RISC-V programs using HTIF (Host/Target Interface).
The program executes through ELF (Executable and Linkable
Format) format.

We generated a two-wide single-core BOOM configuration
using the rocket-chip generator. The ”two-wide” means that
the processor will write up to two instructions into the ”issue
queue”. Also, an 64 bits in-order rocket core’s configuration
was built and generated using the same method. Both proces-
sors are implemented on the same FPGA broad to give them
a fair evaluation. These configurations are loaded from the SD
card as well as the interface to interact with the RISC-V cores
and a root system compressed file which is load into RAM
before executing.

The method to measure the processor’s performance is the
Coremark [9]. Developed by the Embedded Microprocessor
Benchmark Consortium (EEMBC), it is a leading standard
benchmark for CPU cores, replacing the Dhrystone. Coremark
is frequently used to assess the performance of the central pro-
cessing unit and embedded micro-controllers. The Coremark’s
score describes the number of iterations per second with seeds
of 0,0,0x66, and the buffer size of 2000 bytes in total.

We have compiled the Coremark’s source-code using
gcc6.1.0 -O2 of the RISC-V gnu toolchain to benchmark and
compare the performance of both the Out-of-Order processor,
BOOM, and the in-order processor, Rocket Core. As a result

shown in Table I, the performance of the BOOM core is half
as much again as the in-order process. This outcome could
be justified due to the natural character of an Out-of-Order
processor. This brings a massive favour on this processor when
choosing a suitable architecture to construct a new modern
processor.

TABLE I: Coremark Result

Iterations/s

RV64 Boom two-wide 3,737

RV64 Rocket 2,181

III. REPLICATION OF SIDE CHANNEL ATTACK VIA CACHE

Despite inheriting the efficiency of an Out-of-Order pro-
cessor, the BOOM’s micro-architecture contains some funda-
mentals which provide a suited environment for speculative
execution attacks. Firstly, to optimize the computer system, a
speculative execution technique is enabled in the processor’s
architecture which is an ordinary design paradigm of the mod-
ern Out-of-Order processor. During the speculative execution
process, the fetch stages issue a predicted instruction guided
by a branch predictor unit. This part uses two stages of branch
prediction: a next-line predictor, NLP, and a backing predictor,
BPD [7]. If a mispredicted branch happens, the register
which renames and reorders the structures in the next stages
will allow the pipeline to recovery from the misspeculations.
Regardless, visible effects still appear in which side-channel
attacks could exploit to obtain private information from those
misspeculated steps.

There are many types of spectre attacks that exploit different
characteristics of the processor: Pattern History Table, Branch
Target Buffer, Return Stack Buffer and Store To Load [10]. All
of them manipulate the prediction mechanism of the micro-
architectural.

In this experiment, we performed an attack on the imple-
mented BOOM configuration on the ZC706 FPGA by focusing
on branch misprediction. Suppose the program, which the

Fig. 2: Spectre attack log.

Fig. 3: Bound check bypass attack.

Fig. 4: Effect for side-channel attack.

adversary plan to exploit, includes conditional instruction with
a bound check to prevents the processor reads other private
information in memory.

i f (x < s i z e)
{

key = key + 1 0 ;
}

The conditional branch is trained to execute an instruction
that assesses the crucial data. Typically, the above code ex-
ample would be executed in sequential order. However, to
optimize the performance, the CPU uses the Out-of-Order
execution and tries to predict the result of the bound check
(x < size). When the value of size appears, the CPU will
compare the predicted result with the actual one. If the result is
the same, it would be a cache hit which gains the performance
supremely. In contrast, the CPU reverts and the predicted result
with its outcome execution would be removed, which is called
a cache miss. However, most of the modern CPU, includes
BOOM, forgets the effect caught by the caching process in
the Out-of-Order execution. That makes it be endangered by
the side-channel attack technique.

Return to the attack scenario, a false value will then be given
to the program to fail the bound check. However, before that,
the speculative execution has already retrieved the sensitive
data to the cache as it predicted the bound check would give

a true value. Because the secret data has been revealed, the
attacker could scan and time the memory to achieve the value.
This method follows the FLUSH+RELOAD attack technique
pattern.

The FLUSH+RELOAD technique is performed based on
observing the side-effect of the processor’s memory when
executing programs. There is a huge difference in speed when
the data needed by CPU is already fetched in cached (cache
hit) with when the CPU has to go to the main memory to
achieve the information. First, the adversary flushes shared
address in the memory cache, which is the L1 cache in the
BOOM process. Then the spy waits for the victim function
access the sensitive data. Finally, it reloads to find out which
element’s loading time is faster than others. Consequently, that
is the earlier accessed element. Because most of the security
system depends on the conditional instructions to authenticate
the permission to access sensitive data, this type of attack
could danger many programs containing the private user’s
information.

An experiment has been implemented, compiled using the
RISC-V toolchain and executed on the BOOM core. Firstly, we
test the scenario on the software simulations of this processor
generated by Verilator. The environment is quickly set up
using the Chipyard, which is an agile Chisel-based SoC design
framework [11]. After that, the experiment is loaded and run
on FPGA board ZC706. The result is displayed in the Fig.2
as the log contains the actual character from the secret string
and the guessed character achieved after the attack progress.
Perceptibly, the adversary program has successfully managed
to obtain the full private string. This proved that this RISC-
V Out-of-Order architecture’s security would be exposed to
spectre attack.

IV. A HETEROGENEOUS MULTI-CORE PROCESSOR

As we could see, the above attack exploits the branch
prediction mechanism of the Out-of-Order BOOM core. The
six-stage pipeline of the Rocket core also contains a front-
end with branch prediction, which is served and manageable
by a branch target buffer, a branch history table and a return
address stack [11]. However, the Rocket Core does not issue
data-memory accesses speculatively [12] and Out-of-Order
execution. Therefore, the RISC-V In-Order processor would
not be affected by above side-channel attack scenario.

Both Rocket and BOOM processor have their advan-
tages and disadvantages. A combination of these two micro-
architectures might be an appropriate solution. Fortunately,
they were developed to use the same open-source Rocket
Chip SoC generator. This generator is written in Chisel that
allows to configure and create RTL describing a complete SoC
design. Its parameters include: number of cores, instantiation
of floating-point units, vector units, cache size, number of TLB
entries, the width of off-chip I/O and more. Accordingly, a
blended design of a multi-core processor merge BOOM and
Rocket is feasible. There would be many modifications need
to be processed to avoid conflicts, for example, the hart id
of the core. With this heterogeneous multi-core processor,

average calculations would be executed by Out-of-Order part
to maximize the performance, and the Rocket Core could take
care of sensitive tasks.

V. CONCLUSION

This experiment has successfully implemented and studied
the BOOM processor on a physical FPGA. It has also proved
that the in-order processor’s performance, the Rocket Core,
was outplayed by the Berkeley Out-of-Order processor. This
result has transnational relation with the previous experiments
[2]. However, the BOOM’s architecture has made it become
a convenient mark for speculative execution attacks. Using
the side-channel attack technique that exposes the caching
effect when performs the Out-of-Order execution, user’s pri-
vate information could be alarmingly leaked. Also, this work
shows the benefits of an open-source RISC-V architecture
for designing a custom processor and researching hardware
security.

The BOOM processor possesses important qualities for a
custom high-speed processor. The problem is its vulnerability
with spectre attacks. In contrast, Rocket core’s architecture
does not speculatively provide data-memory accesses. There-
fore, it becomes considerably suitable for securing private and
vital information while being processed by user-level pro-
grams. A heterogeneous multi-core processor that combines
both of these designs could manage and enhance distinct
advantages of the Out-of-Order and in-order processors.

ACKNOWLEDGEMENT

This paper is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES
[1] A Waterman, Y Lee, R Avizienis, H Cook, D Patterson, K Asanovic,

“The RISC-V Instruction Set,” Poster at the Symposium on High
Performance Chips (HotChips-25), Stanford, CA (August 2013).

[2] C Celio, K Asanović, D Patterso, “The Berkeley Out-of-Order Machine
(BOOM): An Industry-Competitive, Synthesizable, Parameterized RISC-
V Processor”, Technical Report UCB/EECS-2015–167, EECS Depart-
ment, University of California, Berkeley (Jun 2015).

[3] Ben Keller, “RISC-V, Spike, and the Rocket Core”, CS250 Laboratory
2 (Version 091713)

[4] Lipp, Moritz et al. “Meltdown: Reading Kernel Memory from User
Space.” USENIX Security Symposium (2018).

[5] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., Andyarom, Y. “Spectre attacks:
Exploiting speculative execution”, arXiv:1801.01203 (2018).

[6] González, Abraham Martı́nez. “Replicating and Mitigating Spectre At-
tacks on a Open Source RISC-V Microarchitecture.” (2019).

[7] C Celio, J Zhao, A, Gonzalez, B Korpan, ”RISC-V-BOOM Documen-
tation” (Version 010420)

[8] Xilinx, ”Zynq-7000 SoC ZC706 Evaluation Kit - Getting Started Guide”
(2018)

[9] Coremark EEMBC Benchmark,” https://www.eembc.org/coremark/.
[10] C Canella, J V Bulck, M Schwarz, M Lipp, B v Berg, P Ortner, F

Piessens, D Evtyushkin, D Gruss,”A Systematic Evaluation of Transient
Execution Attacks and Defenses”, arXiv:1811.05441 (2019)

[11] Berkeley Architecture Research, ”Chipyard Documentation”, (Version
101619)

[12] ”Building a more secure world with the risc-v isa.”
https://riscv.org/2018/01/moresecure-world-risc-v-isa/.

