
TEE Boot Procedure
with Crypto-accelerators in RISC-V Processors

Ckristian Duran
University of

Electro-Communications
Tokyo, Japan

duran@vlsilab.ee.uec.ac.jp

Trong-Thuc Hoang
University of

Electro-Communications,
National Institute of Advanced

Industrial Science and Technology
Tokyo, Japan

thuc@vlsilab.ee.uec.ac.jp

Akira Tsukamoto
National Institute of Advanced

Industrial Science and Technology
Tokyo, Japan

akira.tsukamoto@aist.go.jp

Kuniyasu Suzaki
National Institute of Advanced

Industrial Science and Technology,
Technology Research Association of
Secure IoT Edge Application based on

RISC-V Open Architecture
Tokyo, Japan

k.suzaki@aist.go.jp

Cong-Kha Pham
University of

Electro-Communications
Tokyo, Japan

phamck@uec.ac.jp

ABSTRACT
In this paper, a Trusted Execution Environment (TEE) boot proce-
dure with RISC-V processors and crypto-accelerators is presented.
The RISC-V system consists of dual cores of Rocket Chip and an
SHA-3 accelerator connected on the peripheral bus. Together with
the Ed25519 computation on software, the TEE boot procedure,
which based on the Keystone framework, is implemented. The
Keystone framework provides TEE that can protect data by tak-
ing advantage of the Physical Memory Protection (PMP) of the
RISC-V ISA. The completed system is built and tested on an Altera
Field-Programmable Gate Array (FPGA). The experimental results
show that the calculation process for any bootloader payload to
authenticate can be reduced about 2.5 decades of milliseconds in
comparison with pure software approaches.
ACM Reference Format:
Ckristian Duran, Trong-Thuc Hoang, Akira Tsukamoto, Kuniyasu Suzaki,
and Cong-Kha Pham. 2020. TEE Boot Procedure with Crypto-accelerators
in RISC-V Processors. In CARRV ’20: Workshop on Computer Architecture
Research with RISC-V (with ISCA 2020), May 30, 2020, Valencia, Spain. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A Trusted Execution Environment (TEE) prevents unauthenticated
code from running by using hashing, certificate signing, and cryp-
tography. A clear example of this environment is the boot procedure,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CARRV ’20, May 30, 2020, Valencia, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

which authenticates a bootloader by usingmanufacturer-given keys
to sign the payload from an untrusted device such as external flash
memories. The security data is often protected over address re-
gions by scaling the privilege level in a processor. In the RISC-V
Instruction Set Architecture (ISA) specification, a machine mode
runs first when the processor is in a reset state, then escalates to the
user mode, protecting the access of previously configured memory
regions using a Physical Memory Protection (PMP) scheme [1].

The TEE can be performed in several ways, and each one com-
poses a framework that limits the communication in the system
by trusted privileges. An enclave framework uses memory pro-
tection in user mode to store sensitive data in selected areas of
the address space. TrustZone in ARM can be configured to protect
memory address spaces through a barrier [4]. Sanctum is an en-
clave that isolates on software level over memory pages utilizing a
memory translation modification in hardware [10]. Mi6 protects
cache coherence attacks by using speculative out-of-order multi-
core processors and sanctums [9]. Keystone is a framework for
RISC-V processors that takes advantage of the physical memory
protection standard to authenticate the execution of programs in
a safe environment [3]. TIMBER-V is also an isolation scheme for
RISC-V processors that provides security with low overhead [8].

In this paper, we present a system for the TEE boot implemented
in a high-end Altera Stratix IV Field-Programmable Gate Array
(FPGA). The system consists of dual cores of Rocket Chip [7]
with cryptography accelerators. The chosen RISC-V ISA is the
RV64IMAFDC extensions. The RV64IMAFDC extensions stand for
64-bit RISC-V ISA with Integer,Multiplication, Atomic, Floating-
point, Double, and Compress instructions. The hardware SHA-3
[6] is utilized and connected to the system via the peripheral bus.
The Ed25519 [2] calculations is implemented on software-level. The
Keystone framework [3] is applied for the TEE boot procedure.
The experimental results show that the calculation process for any

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CARRV ’20, May 30, 2020, Valencia, Spain Duran, et al.

Figure 1: Hardware architecture of the SoC TEE.

bootloader payload to authenticate is reduced about 2.5 decades of
milliseconds comparing to pure software computation.

The remainder of this paper is organized as follows. Section II
describes the proposed system on FPGA. Section III explains the
TEE boot procedure. Section IV gives the result. And Section V
concludes the paper.

2 HARDWARE IMPLEMENTATION
The system for the TEE features RISC-V processors implement-
ing the RV64IMAFDC instruction sets [1]. We use the Rocket chip
generator as the hardware platform to integrate the security acceler-
ators [5, 7]. Fig. 1 presents the computer architecture of the security
system. We implemented two RISC-V cores supporting integer,
multiplication, and floating-point operations. The system contains
several peripherals attached to a limited TileLink peripheral bus
such as GPIO, MMC controller, UART, and ROM. The security cores
are located in the peripheral bus, whose configurations and data
I/O are memory-mapped using register routers.

Fig. 2 shows the peripheral architecture of the SHA-3 accelera-
tor. This accelerator contains a padding module and a Keccak-1600
round calculator [6]. The padding module retrieves 64-bit data from
the register-router, then is pushed through the 576-bit buffer using
a shifter. When the buffer is full, the accelerator performs a round
calculation. A constant counter keeps track of the number of rounds
and constant non-linearity of the iota phase of the Keccak round.
The first round is calculated from the first 64-bit data push through
the padding module. Every round state is stored in a 1600-bit status
register. When the final data is pushed through the padding module,
the round calculation performs the final rounds in the status regis-
ters. Then the first 512-bit word can be used for the hash output of
the calculation.

3 TEE BOOT PROCEDURE
The TEE boot process is based on the Keystone platform [3]. The
platform creates public and private keys from the manufacturer’s
keys. This platform uses these keys to generate a signature of the
bootloader to authenticate. The Keystone procedure is stored in a
boot ROM on a fixed memory range where the multiple processors
point the reset vectors, often named the Zero-State BootLoader
(ZSBL). After the ZSBL stage, another bootloader usually utilized
called the First-Stage BootLoader (FSBL). Then after the FSBL stage,

Register router

Round calculation

Padding module

Padding

Padder

Shifter

Buffer (576b)E

Input ready
(trigger)

Input

XOR

Constant
Counter (ɩ)

Round
(θ,ρ,π,χ,ɩ)

1600b
Register

First

TI
LE

LI
N

K
PE

RI
PH

ER
A

L
BU

S
(P

BU
S)

64b R/W

512b R

1b R0/W1

1b R
Done

3b R/W
Final size

Figure 2: Hardware architecture of the SHA-3 accelerator.

Figure 3: The procedure of TEE boot and root of trust.

the system runs a Linux bootloader like the Berkeley BootLoader
(BBL) or OpenSBI, together with the Linux kernel and the initial
ram file-system. The FSBL and BBL can be stored in any external
media as a payload to authenticate. In this case, the payload is
located in an external SD-card driven by an SPI controller.

Fig. 3 describes the TEE boot process using the previous hard-
ware architecture. First, the ZSBL in boot ROM locates and copies
the FSBL from the external media (SD-card) to the main memory.
Then, it jumps to the FSBL and executes there. After that, the FSBL
locates and copies the BBL from the SD-card to the main memory.
It also creates the Secure Monitor (SM) in the memory. The SM
then extracts the initial seed for the key pair by hashing the copied
BBL payload. The hash calculation is performed via the memory-
mapped SHA-3 previously described in Fig. 2 by pushing 64-bit
chunks of data through the input register. The result of the hash
is pushed to the Ed25519 base point multiplier for generating the

TEE Boot Procedure
with Crypto-accelerators in RISC-V Processors CARRV ’20, May 30, 2020, Valencia, Spain

Table 1: Synthesis results of the Stratix-IV GX Altera FPGA.

SHA-3 Rocket Tile
ALUTs 8108 24332
FFs 2790 15325

RAM Bits 0 17680
DSP 0 32
Total 10898 57369

Logic Util. (%) 3.4 12.4
RAM Util. (%) 0.0 1.0
DSP Util. (%) 0.0 2.4

public and secret pair of keys. With the help of the SHA-3 accelera-
tor and the newly created keys, the SM performs the signature of
the BBL payload then stores the result in a secure memory address
for further use. At this point, the Linux kernel can be boot by exe-
cuting the BBL. Finally, after boot, the BBL authentication can be
done by the attestation function provided by the SM via signature
verification.

4 RESULTS
The proposed system is implemented in the DE4 Altera FPGA with
the Stratix IV GX EP4SGX230 FPGA chip. The built results are given
in Table 1. Most of the logic utilization in the FPGA is occupied
by the Rocket tiles with 12.4%, followed by the SHA-3 accelerator
with 3.4%. The Rocket tiles contain floating-point logic, integer
multipliers, and dividers that synthesizes 2.4% of the DSP resources.
The caches for the Rocket tiles contain 4KB of RAM, utilizing 1% of
the RAM resources.

The execution environment was tested on the system using both
pure-software and hardware-accelerated implementations. We run
this environment with several payload sizes to measure time on
authenticating the bootloader and the Linux kernel. Fig. 4 presents
the overall execution time for the Keystone bootloader to perform
the root of trust in the TEE boot for several payload sizes. The
payload size includes the Linux bootloader and the Linux kernel,
along with the initial file system. This payload was increased on
the initial file system by putting random data on a file in several
sizes. For both software and hardware implementations, the time
increments exponentially. For any stream size, the execution time on
the hardware implementation of the Keystone framework decreases
about 2.5 decades compared to pure-software.

The algorithm presented in Fig. 3 to authenticate the payload
mostly uses the SHA-3 hashing, leaving the Ed25519 keypair and
signing as an additional calculation process. We present the Table
2 to offer a broader perspective on the individual calculation ex-
ecution over a 2MB of BBL. A software-based implementation of
both SHA-3 and Ed25519 presents an exponential increase of time
compared to a hardware-only SHA-3 in the signature procedure, as
the payload needs to be hashed twice. A hardware solution for the
SHA-3 does not impact the execution time heavily in the keypair
generation, as the hash to calculate is performed over a 256-bit
stream.

0.001

0.01

0.1

1

10

100

1000

1M 2M 4M 8M 16M 32M 64M

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c

@
1

0
0

M
H

z)

Boot Size (Bytes)

Software Hardware

Figure 4: Comparison between software and hardware im-
plementations of the TEE boot.

Table 2: Execution results for the Ed25519 key and signature
processes.

2MB bootloader Software HW SHA-3
SW Ed25519

Ed25519 keypair (ms) 109.5 93.4
Ed25519 signature (ms) 231019 82.6

5 CONCLUSION
In this paper, a system platform for trusted execution environments
(TEEs) featuring the SHA-3 accelerator is presented. The system
integrates a RISC-V core with RV64IMAFDC ISA extensions using
the Rocket chip generator, including memory protection for Key-
stone support. The SHA-3 accelerator hashes data using a 64-bit
register as input. The software is composed of a root of trust to
authenticate a Linux bootloader using Keystone for TEE boot. This
software utilizes the accelerators by pushing the data over memory-
mapped registers and triggers to obtain calculation results for the
authentication signature.

ACKNOWLEDGEMENT
This paper is based on results obtained from a project commis-
sioned by the New Energy and Industrial Technology Development
Organization (NEDO).

REFERENCES
[1] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović. May 2014. The RISC-V

Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical Report
UCB/EECS-2014-54. EECS Department, University of California, Berkeley. http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[2] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. Sep. 2012. High-
speed High-security Signatures. Journal of Cryptographic Engineering 2, 2 (Sep.
2012), 77–89.

[3] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, and K. Asanovic. 2019. Keystone: A
Framework for Architecting TEEs. CoRR abs/1907.10119 (2019). http://arxiv.org/
abs/1907.10119

[4] E. M. Benhani, L. Bossuet, A. Aubert. Aug. 2019. The Security of ARM TrustZone
in a FPGA-Based SoC. IEEE Trans. on Computers 68, 8 (Aug. 2019), 1238–1248.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović. June 2012. Chisel: Constructing Hardware in a Scala Embedded
Language. In DAC Design Automation Conf. 1212–1221.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://arxiv.org/abs/1907.10119
http://arxiv.org/abs/1907.10119

CARRV ’20, May 30, 2020, Valencia, Spain Duran, et al.

[6] National Institute of Standards and Technology. Aug. 2015. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions.

[7] RISC-V Foundation. 2019. Rocket Chip Generator. https://github.com/
chipsalliance/rocket-chip

[8] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R. Sadeghi. 2019.
TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V. In

NDSS.
[9] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, and S. Devadas. 2019. Mi6: Secure

Enclaves in a Speculative Out-of-order Processor. In Annual IEEE/ACM Int. Symp.
on Microarchitecture. 42–56.

[10] V. Costan, I. Lebedev, and S. Devadas. 2016. Sanctum: Minimal Hardware Exten-
sions for Strong Software Isolation. In 25th USENIX Security Symp. 857–874.

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip

	Abstract
	1 Introduction
	2 Hardware Implementation
	3 TEE Boot Procedure
	4 Results
	5 Conclusion
	References

