
Software-Based Off-Chip Memory Protection
for RISC-V Trusted Execution Environments

Gui Andrade
guiand@berkeley.edu

UC Berkeley

Dayeol Lee
dayeol@berkeley.edu

UC Berkeley

David Kohlbrenner
dkohlbre@berkeley.edu

UC Berkeley

Krste Asanović
krste@berkeley.edu

UC Berkeley

Dawn Song
dawn@berkeley.edu

UC Berkeley

Abstract
We present a software-based memory protection for RISC-V
enclaves. Our system provides confidentiality and integrity
guarantees for the enclave pages when an attacker can arbi-
trarily read or write to external memory. Unlike hardware-
based implementations such as Memory Encryption Engine
(MEE) in Intel SGX, our software-based implementation re-
quires no additional security-specific hardware. We use in-
stead only a small on-chip scratchpad as our trusted mem-
ory region. This results in a portable and highly adaptable
solution, applicable to primarily embedded contexts. Our
approach is implemented as a module for Keystone, which
is an open-source framework for RISC-V enclaves.

1 Introduction
Many kinds of hardware-software systems require somemea-
sure of secret keeping, even from the user in possession of
the hardware. Game systems and TVs implement copy pro-
tection schemes; the Apple iPhone secures user data such
that even law enforcement cannot access it; car manufac-
turers (strive to[13]) secure safety-critical equipment from
tampering.
In all of these scenarios, the adversary has non-trivial

physical access to the device. Thus, signals running from an
SoC package to off-chip DRAM may be tapped by a suffi-
ciently determined attacker [4], rendering off-chip memory
unsuitable for storing security-critical secrets such as DRM
decryption keys.
In this paper, we demonstrate defenses against such ad-

versaries in the context of a Trusted Execution Environment
(TEE). We propose, implement, and evaluate a scheme for
encryption and integrity protection of all Secure Enclave
accesses to DRAM.
There are several existing systems to accomplish similar

goals, the most well known being Intel’s SGX and Memory
Encryption Engine (MEE). These solutions are high perfor-
mance and have significant benefits, but require dedicated
additional hardware to support. We instead propose lever-
aging the Keystone TEE framework’s model, where appli-
cations in enclaves may handle their own paging entirely
from software to add support for encryption and integrity

Processor Package

On-chip
Pages

Runtime !

Processor Package

SpadCache Cache

DRAM EPC DRAM EPM

Non-Enclave
Enclave

MC MEE ! MC

P
aging

SM

Off-chip
Pages

Hardware-Based
(Intel SGX)

Software-Based
(Keystone)

CoresCores

Figure 1. Our software-based off-chip memory protection
compared to the hardware-based one in Intel SGX. Intel SGX
relies on hardware extension of the memory controller (MC),
whereas our approach relies on an on-chip scratchpad (Spad)
and the runtime software inside the enclave.

protection. A similar approach, but for full operating sys-
tems and lacking integrity protection, was proposed and
evaluated in Chen et al [1]. Our system is applicable to cases
where an application is expected to rarely grow in size past
an available scratchpad memory, but cannot be guaranteed
not to. In these cases, the costs of software encryption and
integrity protection are well amortized across the lifetime of
the application and avoid the costs associated with extensive
hardware additions.

2 Background
Trusted Execution Environments (TEEs) are a wide-spread
security mechanism used for establishing trust in remote
systems. TEEs provide strong security guarantees (confi-
dentiality and integrity) for applications running inside a
TEE provided partition, often called an enclave. TEEs are
expected to protect enclaves against adversarial privileged
software (including an OS), other enclaves, and in some cases
adversaries with physical access.

2.1 Keystone
This paper describes a scheme analogous to those commonly
implemented in security extensions to commodity CPUs[5][8],
but implemented completely in software for RISC-V. This

memory encryption and integrity scheme is implemented
within Keystone, an open-source TEE framework for RISC-V
systems developed at UC Berkeley[10]. One of the notable ad-
vantages RISC-V brings to Keystone is allowing each enclave
to handle its own page faults entirely in-enclave.
Keystone leverages RISC-V’s Machine-mode and Physi-

cal Memory Protection features to operate decoupled from,
and effectively transparent to, a host operating system. It
provides a lean Security Monitor (SM) which executes in M-
mode, handling management of enclaves and context switch-
ing between the host OS and enclaves as requested. Keystone
also provides a modular enclave Supervisor-mode runtime
to handle interrupts, memory management, and to shim es-
sential Linux syscalls. This runtime is generally small, and
supports only a few needed features for the enclaved applica-
tion. Runtimes are customized and provided by the enclave
application developer, and are not part of the trusted Security
Monitor.

Our proposed memory protection scheme operates as an
additional set of optional modules for the Keystone Eyrie run-
time. We use the existing paging module to determine when
and which pages must be evicted from the on-chip memory
or retrieved from DRAM.Without our additional protections,
any sensitive data in these pages would otherwise be visible
to some physical adversaries.

3 Threat Model
We consider an adversary who has physical access to our
device, and some level of capability to interact with off-chip
components, notably DRAM. There are two primary threats
to consider when defending against a physical adversary
with DRAM access.

Simpler is the ’cold-boot’ attacker [9], who has the capabil-
ity to halt the device and examine all DRAM content. They do
not, critically, have the ability to modify this DRAM content
and then continue execution of the system. For defending
against this adversary all that is required is confidentiality
for all data residing in DRAM.

More complex is an active attacker who has the capability
to mutate all DRAM content during execution. This requires
significantly more hardware investment and expertise than
the cold-boot adversary. In this case, the defender must en-
sure both confidentiality and integrity for all DRAMmemory
content. Note that we do not guarantee the ability to recover
from adversarial mutation of DRAM content, simply that we
can detect it and halt safely.

Classical software adversaries (other processes, enclaves,
compromised operating systems, etc.) are handled by the
standard Keystone TEE guarantees, and are out of scope for
this paper.
Cache-based side-channel attacks are not applicable in

this model, as we repurpose the shared L2 cache into a
scratchpad. Side-channel attacks based on coarse-grained

AES
Encrypt

Tree insert

Tree query

Secure on-chip memory

Untrusted DRAM

source

AES
Decrypt

SHA256

SHA256
(1)

(2)

(3)

(4)
(5)

(6)pg.

page 1 page 2 ...

page 1

dest.

page 2 ...

Figure 2. Dataflow for our protection scheme during a page
swap, including both encryption and integrity protection.

data-dependent memory access patterns or timing are out
of scope of our work. We also assume the target is able to
tolerate Denial of Service attacks: at any time the adversary
may simply turn off the device or have a compromised OS
stop scheduling the enclave to execute.

4 Software-Based Memory Protection
Design

Our design uses several distinct components; a generic pag-
ing system, an integrity tree, and page encryption. While we
implement all components as software modules in Keystone,
these can be integrated and accelerated independently with
hardware extensions where available.

When the system’s on-chip secure memory is exhausted,
it uses Keystone’s enclave self-paging system to manage
pages being swapped from on-chip to DRAM and back. These
pages, when stored in DRAM, are encrypted using AES with
a per-enclave key and integrity protected using hashes stored
in a Merkel-tree style construction for efficiency.
Figure 2 shows the complete set of operations that occur

on a page swap between on-chip memory and DRAM. In the
case of an enclave application page-fault due to the accessed
page being stored in off-chip DRAM: we hash (1) and encrypt
(2) the page leaving the scratchpad, both using a counter
value unique to each page (not shown), and then insert it
into off-chip storage. The incoming page is then decrypted
(3), hashed (4), integrity checked against the tree (5), and
finally the outgoing page’s integrity information is stored in
the tree (6).

4.1 Hardware Requirement
We assume a standard RISC-V platform which is capable
of running a Keystone-based [10] TEE system. Keystone
provides basic memory isolation using RISC-V’s physical
memory protection (PMP), as well as remote attestation and
enclave management. We assume that the hardware has an

2

authenticated root of trust and is running a Keystone security
monitor (SM), which is trusted machine-mode software.

The only non-standard hardware requirement for our off-
chip memory protection is a small on-chip scratchpad mem-
ory, mapped to a physical address range that is not accessible
by supervisor or user software. Such a scratchpad can be in-
stantiated from an M-mode configurable Loosely Integrated
Memory (LIM) such as the LIM available on SiFive’s FU540
SoC. Existing hardware-based approaches [5, 8] to memory
encryption use extensions in microarchitectural components
such as memory controller to store needed on-chip state.
Those extensions can protect the off-chip memory transpar-
ently from the software by encrypt or decrypt the cache lines
on-the-fly, and by initiating additional memory transactions
if needed.
As our solution is software based, we can use a generic

scratchpad rather than dedicated on-chip memory, split into
partitions as needed for different components. Thus, the
Keystone Security Monitor as well as the enclave under pro-
tection must be loaded entirely into the available scratchpad
memory.

4.2 Enclave Self-Paging
Keystone allows each enclave to manage its own virtual
memory mapping by completely releasing the memory man-
agement unit (MMU) to the enclave during execution. The
Keystone Eyrie runtime resides exclusively in on-chip mem-
ory during execution, and is responsible for paging the ap-
plication content into and out of the scratchpad. On boot
up on an enclave, the runtime queries the SM for a DRAM
storage region to use as a swap space.
Whenever a page fault occurs, this paging mechanism

will evict a page from on-chip memory to the backing store,
and optionally load a demanded page to the same physical
address. In pseudocode:

Algorithm 1 SwapPage(𝑝𝑑𝑟𝑎𝑚, 𝑝𝑜𝑛𝑐ℎ𝑖𝑝 , swap)

if swap then
tmp← 𝑝𝑑𝑟𝑎𝑚

end if
𝑝𝑑𝑟𝑎𝑚 ← 𝑝𝑜𝑛𝑐ℎ𝑖𝑝
if swap then
𝑝𝑜𝑛𝑐ℎ𝑖𝑝 ← tmp

end if

4.3 Memory Encryption
Confidentiality for memory leaving the scratchpad is accom-
plished by encrypting all page content with AES-CTR. CTR
Mode (CM) requires some important security considerations
[11]: (1) a specific key and counter combinationmay never be
repeated with different plaintexts, and (2) the system is mal-
leable — that is, an attacker may freely manipulate decrypted
output with some knowledge of the plaintext.

To minimize the amount of memory required for book-
keeping, we randomly generate an enclave-specific key on
initialization, which is used for every encrypted page and
must be kept private inside the on-chip memory. The counter
value for each page is randomly initialized before use, and
incremented whenever a page is swapped. Importantly, a
single 4096-byte page contains 256 AES blocks, so the AES-
CTR operation itself increments by some value greater than
256 in between pageouts to prevent reuse of a keypair for
two blocks. For read security without integrity protection,
it is acceptable to store these counters in off-chip memory
as an attacker reading the IV will still be unable to decrypt
without the secret encryption key. See Algorithm 2 for the
complete operation.

Algorithm 2 CryptoSwapPage(𝑝𝑑𝑟𝑎𝑚, 𝑝𝑜𝑛𝑐ℎ𝑖𝑝 , swap)

if swap then
tmp← 𝑝𝑑𝑟𝑎𝑚

end if
ctr𝑛 ← 32 × Uniform
ctr𝑝 ← CtrStoreSwap(ctr, key = &𝑝𝑑𝑟𝑎𝑚)
𝑝𝑑𝑟𝑎𝑚 ← AesEncrypt(𝑝𝑜𝑛𝑐ℎ𝑖𝑝 , key, ctr𝑛)
if swap then
𝑝𝑜𝑛𝑐ℎ𝑖𝑝 ← AesDecrypt(𝑝𝑡𝑚𝑝 , key, ctr𝑝)

end if

4.4 Page Integrity
To prevent replay attacks, an attacker must be prevented
from reloading both a stale page’s contents to the page store,
and a stale counter to the counter store. By preventing the
replay of any page’s counter, the attacker will be unable
to replay the page swap and obtain decipherable results
(not accounting for the AES malleability property, which is
addressed below).

The simplest solution to protecting these counters would
be to place the counter store inside on-chip memory, where
attackers are unable to access it. Unfortunately, this becomes
space prohibitive; with an off-chip backing store of poten-
tially tens of thousands of pages, this counter store would
occupy hundreds of kilobytes of limited secure memory. Sim-
ilarly, storing only a single hash of the entire counter store
results in a prohibitive performance cost of𝑂 (𝑁) hashes per
page swap where 𝑁 is the number of pages swapped by the
enclave.
We instead reduce the number of hashes per swap to

𝑂 (log𝑁), and additionally solve the AES malleability prob-
lem, by use of a Hash Tree data structure. We store, for each
leaf, a hashed tuple of the page contents, the page’s counter,
and the page’s backing address in DRAM.

4.4.1 Hash Trees. We adopt a similar approach to the
Merkle tree data structure[12], with a few critical differences.
Merkle trees are designed for use in distributed cryptography,

3

val=<sentinel>
h=f(hright)

val=d
h=f(d)

On-chip

Off-chip

val=c
h=f(c)

val=a
h=f(a)

val=d
h=f(hleft || hright)

val=d
h=f(hleft || hright)

val=b
h=f(hleft || hright)

val=b
h=f(b)

intermediate
nodes

value
nodes

root
node

Figure 3. A 4-entry hash tree. For simplicity, values are
stored only at the leaves of the tree. Under this structure,
only the root node must be trusted for effective integrity
protection.

where multiple clients need to validate the authenticity of
some data with regards to a root of trust. Thus, a Merkle tree
consists of authenticated nodes — certificates, signing other
certificates, all the way up to a publicly known root of trust
— such that users can walk up the tree to validate any given
certificate.
Our problem is the inverse: given known values for our

nodes, and a private root of trust, how can we ensure the
validity of our nodes without privately storing all the known
values? This question has been explored many times by au-
thors discussing memory authentication schemes, usually
with hardware support[7][6].

For our purposes, we wish to minimize the amount of
secure memory needed to form a root of trust, with which
we can validate page swaps to/from the enclave. Our imple-
mentation of a hash tree stores hashes at the leaves of the
tree, and each non-leaf node stores a hash of its immedi-
ate children’s hashes (see figure 3). So inserting to the tree
implements a series of recursive hashes, ending at the root.
Querying the tree recursively checks these hashes1.
Crucially, for our purposes, the root of the tree must re-

main in secure memory. The hash stored here may only be
written by the enclave, and so if some node 𝑃 of the tree
has been tampered with by an outside actor, the enclave’s
attempt to query the tree at, below, or adjacent to 𝑃 will
cause a hash mismatch.

Insertion takes a two-step approach, where the algorithm
must first recurse1 down to an appropriate intermediate node,
insert a new leaf below it, and propagate newly-computed
hashes back up the tree. As we walk down the tree, we vali-
date intermediate nodes. This is to ensure we don’t implicitly

1In C, this algorithm is implemented iteratively for predictable stack usage
analysis.

Algorithm 3 Query(root, 𝑥 , ℎ𝑥)
ℎ𝑙 ← root.left.hash
ℎ𝑟 ← root.right.hash
ℎ𝑛 ← root.hash
if 𝑥 = root.val then
return ℎ𝑛 = ℎ𝑥

end if
if ℎ𝑛 ≠ Sha256(ℎ𝑙 , ℎ𝑟) then
return False

end if
next← Traverse(root, x)
return Query(next, 𝑥, ℎ𝑥)

trust nodes adjacent to the insertion path when propagating
hashes upward.

Algorithm 4 Insert(root, 𝑥 , ℎ𝑥)
if root.leaf then
if root.val = 𝑥 then
root.hash← ℎ𝑥

else
oldroot← *root
next, sibling← Traverse(root, x)
*next← MakeNode(𝑥, ℎ𝑥)
*sibling← oldroot
root.hash← Sha256(left.hash, right.hash)

end if
else
ℎ𝑙 ← root.left.hash
ℎ𝑟 ← root.right.hash
if root.hash ≠ Sha256(ℎ𝑙 , ℎ𝑟) then

return Error
end if
if root.val < 𝑥 then
ℎ𝑙 ← Insert(root.left, 𝑥, ℎ𝑥)

else
ℎ𝑟 ← Insert(root.right, 𝑥, ℎ𝑥)

end if
root.hash← Sha256(ℎ𝑙 , ℎ𝑟)

end if
return root.hash

Finally, some special timing considerations must be made
so that no race conditions appear between stages of either the
Insert or Query operations. With a literal implementation of
the algorithms as described here in pseudocode, an attacker
may be able to exploit the race between writing a hash at
depth 𝑁 of the tree, and then reading it at depth 𝑁 −1 for the
intermediate node update. With our implementations, which
are completely iterative, two layers of the tree are resident
in secure stack memory at any given time. For Query, this
allows comparing hashes and iterating down the tree to be a

4

single atomic operation with respect to DRAM. For Insert,
comparing values and iterating is similarly atomic, and then
iterating back up the tree is atomic with respect to each
modified node.

This access pattern does not prevent multiple threads from
racing. Rather, it prevents an adversary from injecting data
into the tree which will cause false positive integrity checks.
Should an attacker modify data in a tree’s node at any point
before, during, or after a write, we expect some later query
involving that node to fail its integrity check.

4.5 Comparison to SGX
Intel SGX[8] is a TEE system, available for use in many
commercial Intel processors today. As part of its protections,
SGX provides a similar set of off-chip memory defenses as
in this paper. It protects memory content against a passive
adversary snooping the memory bus, as well as an active
adversary injecting changes into DRAM. To do so, Intel SGX
includes both a memory engine for confidentiality, and an
integrity tree with hardware support.

For encryption, Intel employs memory "version counters"
that fulfill the same role as our AES-CTR counters, namely
to track changes to memory over time in order to prevent
replay attacks. SGX operates on 512-bit chunks of memory
at a time, using a modified AES-CTR 128 with four counters
per chunk. Our scheme is more conservative, using AES-256,
and we are limited by the 4K page boundary as our minimum
chunk size.

For integrity protection, Intel too uses a tree with its root
isolated in on-chip SRAM, though SGX uses 56-bit Carter-
Wegman MACs instead of hashes. Again, this paper uses a
more conservative scheme, coming at a performance penalty;
we opt to use a SHA256 Merkle tree.

The SGX white paper provides practical justifications for
the security of these less conservative choices. Future ver-
sions of our implementation can similarly evaluate loosening
some of the security guarantees for the sake of performance.

5 Implementation
We implemented the complete page encryption and hash-
tree-based page integrity protection system described in
Section 4 on top of the paging module for Keystone’s Eyrie
runtime. This implementation is publicly available on the
Keystone github1.
To render this paper’s hash tree Query/Insert functions

iterative, a few transformations were done. For Query, we
note that the function ends with a tail call, and use tail call
elimination to transform it into a loop with space complexity
𝑂 (1). For Insert, the recursive call is not a tail call, so wemust
use a stack on-chip to store intermediate data. On average,
we need to store𝑂 (log(𝑃 nodes)). We specify the maximum

1https://github.com/keystone-enclave/keystone-runtime/pull/27

tolerable tree depth as a build-type parameter, and store this
insertion stack in the runtime’s .data section.

Our implementation is written entirely in C, and uses ex-
ternally sourced implementations of SHA256 and AES (1200
lines-of-code). Our hash-tree implementation is 300LoC, and
the page encryption integration adds 100LoC to the existing
Eyrie paging module.

5.1 Memory and Performance
The amount of on-chip and off-chip memory used for encryp-
tion and integrity protection are both functions of the size of
pageable memory. For on-chip overhead, we pay a constant
space penalty of one page for the temporary storage during
a swap. On top, insertion stores (𝐻 +𝑊) log(𝑃) bytes, where
𝑃 is the total number of swapped pages, 𝐻 = 32 is the hash
size for SHA256, and𝑊 = 8 is for a traversed parent pointer
(for walking back up the tree). For the off-chip overhead
of our hash tree, we store approximately 2𝑁𝑃 bytes, where
𝑁 = 64 is the size of a hash tree node (including the hash,
node value, and pointers to left/right children). Our pageout
counter store, also off-chip, comprises 𝑃 64-bit counters, or
8𝑃 bytes. The practical limitation for how many pages can
be safely stored off-chip is thus not limited by the storage
space on-chip but by the performance impact of tree depth
and available off-chip storage.

6 Summary of Security Analysis
We protect against (1) an attacker both attempting to snoop
the off-chip memory, as well as (2) an attacker modifying
data stored off-chip, including by replaying old pages.
The read-only or cold-boot adversary is thwarted by our

use of AES-CTR 256 to encrypt any memory leaving the chip.
CM provides adequate protection if we never reuse a (key,
counter) tuple, and this is ensured by a randomly generated
key on boot, coupled with a unique counter per page which
increments on each page swap. Counter overflow should be
handled by terminating the enclave safely.

The active adversarywill result in eventual failure once the
enclave attempts to swap in the modified page. A hash over
(page contents, pageout counter, page address) is checked
against the hash tree. The tree’s integrity is protected by re-
cursive layers of hash checking, and its final layer is checked
against a hash stored on-chip, out of attacker reach.
The failure mode is the immediate safe self-shutdown of

the enclave. Thus an attacker may learn that a specific page
is being queried by the enclave — though as we presume they
have access to the DRAM bus, they may simply read the bus
to see when that page is swapped in or out. But the attacker
cannot use such a failure to learn information, as the enclave
does not proceed to execute after a page integrity violation.

5

https://github.com/keystone-enclave/keystone-runtime/pull/27

benchmark # Page
Faults

Paging
Overhead

qsort 285147 128.6×
aes 59716 16.4×
norx 58834 28.6×
miniz 18341 1.8×
bigint 168 1.0×
sha512 0 1.0×
dhrystone 0 1.0×

Table 1.Number of page faults reported by Lee et al.[10] and
paging overhead over baseline for a 1MB on-chip scratchpad

qsort aes norx miniz bigint sha512 dhrystone103

104

105

106

107

La
te

nc
y

(m
s) Baseline P PI PE PIE

Figure 4. Average execution time for rv8 benchmark tests
under various configurations. Note log scale.
Baseline: Not in enclave, P: In enclave scratchpad + Paging
support to DRAM, PI: P + Hash tree Integrity protection, PE:
P + Encryption of pages, PIE: P + Integrity and Encryption

qsort aes norx miniz bigint sha512 dhrystone0

10

20

30

Sl
ow

do
wn

 o
ve

r P
ag

in
g

3.
0x 4.
3x

4.
4x 5.
5x

1.
2x

1.
0x

1.
0x

7.
9x 12

.7
x

13
.0

x 18
.0

x

1.
8x

1.
0x

1.
0x

9.
9x 15

.9
x

16
.2

x 22
.4

x

1.
9x

1.
0x

1.
0x

PI PE PIE

Figure 5.Multiplicative slowdown of PI, PE, and PIE config-
urations over plain Paging configuration. Linear scale.

7 Evaluation
For our experiments, we used a SiFive HiFive Unleashed
development board, with an FU540 SoC. On this, we run
a Keystone-derived TEE with support for managing the
FU540’s LIM enabled. We allocate a default of 1MB of an
on-chip scratchpad to the enclave during test and 260MB of
swap space in DRAM. Test results are averaged across 10
runs for each configuration.

We ran eight tests from the rv8 benchmark suite for RISC-
V[2], the results of seven of which are shown in figures 4
and 5. primes, is excluded as the total execution time under
our test configurations was in excess of 10 hours per-test.
We expected many tests to perform orders of magnitude

slower when any form of paging was necessary, as estab-
lished in the original Keystone paper[10], and our findings
were consistent with this expectation. More interesting was

the additional cost of enabling extra security features: Page
Encryption (PE), Page Integrity (PI), and Page Integrity with
Encryption (PIE). By running each of these configurations
independently impact of each feature is clear.
As figure 5 clearly demonstrates, encryption/decryption

accounted for the bulk of the additional cost among these
features. Most page swaps involved two passes of AES-CTR
256, one to encrypt the outgoing page, and one to decrypt the
incoming page. The software implementation we used was
not particularly optimized for speed[3], nor did the hardware
feature any crypto acceleration or even instruction-level
parallelism (the FU540 SoC used to measure uses a single-
issue, in-order pipeline[14]).

8 Future Work
For simplicity of implementation, the hash tree presented
in this paper is a classical binary search tree. We allocate
backing pages sequentially, so to ensure the BST is balanced,
we use an injective key scrambling function. We would like
to explore alternative tree structures that self-balance (red-
black or B-trees, for simple examples), and how performance
characteristics change.

Also discussing memory authentication using a hash tree,
Gassend, Suh, et. al. described a tree node caching scheme
that reduced their runtime overhead from near a factor of 10,
down to about 25%[7]. Under their system, the tree’s most
recently used intermediate node hashes are cached to allow
the tree query mechanism to short circuit in the average
case. Implementing caching this way in Keystone is likely to
spare significant processing time during a page swap.
Additionally, we would like to explore integrating hard-

ware cryptography blocks or ISA extensions as they be-
come available for commercial RISC-V boards. Specifically,
whether hardware implementations of AES or SHA can
match the total latency of a software implementation, given
burst sizes of 4096 bytes (1 page). With hardware blocks,
we may also be able to encrypt and hash a page in parallel,
instead of sequentially. Starting with a complete software im-
plementation allows for finding a balance between the speed
of hardware acceleration and the flexibility of software.

9 Conclusion
We designed, implemented, and evaluated a software off-
chip memory encryption and integrity protection system for
Keystone-based RISC-V Trusted Execution Environments.
Our novel design uses a simple modular approach allowing
for each component to be enabled separately and evaluated
independently. This approach allows a Keystone TEE system
to choose an appropriate set of defenses for a given applica-
tion and adversary, without any modifications to hardware
or core TEE systems. For applications with a limited memory
footprint, software-based encryption and protection offers a
compelling alternative to expensive hardware extensions.

6

References
[1] Xi Chen, Robert P Dick, and Alok Choudhary. 2008. Operating system

controlled processor-memory bus encryption. In DATE.
[2] Michael Clark. 2019. rv8-bench. https://github.com/rv8-io/rv8-bench/
[3] Brad Conte. 2012. crypto-algorithms. https://github.com/B-Con/

crypto-algorithms
[4] DanglingPointr. 2019. Hacking The 3ds IV: Hardware attacks. https:

//pedro-javierf.github.io/devblog/hacking3ds4/
[5] Advanced Micro Devices. 2020. AMD SEV-SNP: Strengthening VM

Isolation with Integrity Protection and More. Technical Report.
[6] Reouven Elbaz, David Champagne, Catherine Gebotys, Ruby Lee,

Nachiketh Potlapally, and Lionel Torres. 2009. Hardware Mechanisms
for Memory Authentication: A Survey of Existing Techniques and
Engines. Transactions on Computational Science 4 (01 2009), 1–22.
https://doi.org/10.1007/978-3-642-01004-0_1

[7] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas. 2003.
Caches and hash trees for efficient memory integrity verification. In
The Ninth International Symposium on High-Performance Computer
Architecture, 2003. HPCA-9 2003. Proceedings. 295–306. https://doi.org/

10.1109/HPCA.2003.1183547
[8] Shay Gueron. 2016. A Memory Encryption Engine Suitable for Gen-

eral Purpose Processors. Technical Report. Intel Corporation, Intel
Development Center, Israel.

[9] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson,
William Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum,
and Edward W Felten. 2009. Lest we remember: cold-boot attacks on
encryption keys. Commun. ACM (2009).

[10] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and
Dawn Song. 2020. Keystone: An Open Framework for Architecting
TEEs. In Proceedings of the Fifteenth European Conference on Computer
Systems (EuroSys’20).

[11] John McGrew. 2002. Counter Mode Security: Analysis and Recommen-
dations. (November 2002).

[12] Ralph C. Merkle. 1990. A Certified Digital Signature. In Advances in
Cryptology — CRYPTO’ 89 Proceedings, Gilles Brassard (Ed.). Springer
New York, New York, NY, 218–238.

[13] Sen Nie, Ling Liu, and Yuefeng Du. 2017. Free-fall: Hacking Tesla from
Wireless to CAN Bus (Black-Hat).

[14] SiFive. 2018. SiFive FU540-C000 Manual.

7

https://github.com/rv8-io/rv8-bench/
https://github.com/B-Con/crypto-algorithms
https://github.com/B-Con/crypto-algorithms
https://pedro-javierf.github.io/devblog/hacking3ds4/
https://pedro-javierf.github.io/devblog/hacking3ds4/
https://doi.org/10.1007/978-3-642-01004-0_1
https://doi.org/10.1109/HPCA.2003.1183547
https://doi.org/10.1109/HPCA.2003.1183547

	Abstract
	1 Introduction
	2 Background
	2.1 Keystone

	3 Threat Model
	4 Software-Based Memory Protection Design
	4.1 Hardware Requirement
	4.2 Enclave Self-Paging
	4.3 Memory Encryption
	4.4 Page Integrity
	4.5 Comparison to SGX

	5 Implementation
	5.1 Memory and Performance

	6 Summary of Security Analysis
	7 Evaluation
	8 Future Work
	9 Conclusion
	References

