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● Graph are everywhere
○ Implicit data-parallelism
○ Irregular data layout

● Usefulness of fixed-function acceleration of graph kernels is debatable
● Use general purpose data-parallel acceleration for graph workloads

○ Maximize the efficiency of data-parallel processors

Graphs

Images: http://netplexity.org/?p=809, http://horicky.blogspot.com/2012/04/basic-graph-analytics-using-igraph.html, http://mathworld.wolfram.com/GraphDiameter.html
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● Packed-SIMD
○ Register size exposed in the programming model
○ Direct bit-manipulation
○ ISA implications every technology generation change 

● GPUs
○ SIMT programming model
○ Throughput-processors, scratchpad memories

● Vector Architectures
○ Vector-length agnostic programming model
○ Additional flexibility in µarch optimization 

Common Data - Pa ra lle l Arch it ect u r es



● Intel AVX
○ Small parallelism factor
○ AVX register utilizations size alignments

■ Alternative sparse-matrix representations
to fit AVX registers (Grazelle [1])

● GPUs [2][3]
○ Amortize data-movement between host memory and GPU memory
○ Load balancing between warps and threads

Graphs in Data - Pa r a lle l Ar ch it ect u r es

[1] Making Pull-Based Graph Processing Performant, Samuel Grossman, Heiner Litz and Christos Kozyrakis
[2] Scalable SIMD-Efficient Graph Processing on GPUs, Farzad Khorasani, Rajiv Gupta, Laxmi N. Bhuyan
[3] Multiple works by John Owens (UC Davis)

Photo credits:
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://www.tomshardware.co.uk/why-gpu-pricing-will-drop-further,news-58816.html

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://www.tomshardware.co.uk/why-gpu-pricing-will-drop-further,news-58816.html


● Non-standard RISC-V ISA extension
● Vector-length agnostic 

programming model
● Silicon-proven, open-source vector 

accelerator
○ Open-sourced at the 1st RISC-V Summit

Hwacha Vect or  Arch it ect u r e

● Integrated with Rocket chip 
generator

● TileLink cache-coherent memory 
system

● Parameterizable multi-lane design



● Decoupled access-execute
● 4 ops/cycle per lane average throughput
● 128 bits/cycle backing memory bandwidth
● 16 KiB SRAM banked register file per lane

○ Max vector length of 2048 double-width 
elements

○ Systolic-bank execution
○ 4x128 bits register file bandwidth

Hwacha Vect or  Arch it ect u r e



● Data-parallel accelerators + 
multi-processors

● Mixing parallelism properties
○ Task level parallelism –

flexible, but expensive
○ Data level parallelism -

efficient, but rigid
● Many design points, 

both SW and HW
● How to partition?

Nested Parallelism



● Graphs commonly represented as:
○ Adjacency lists
○ Adjacency matrices

● Adjacency matrix is usually a sparse matrix
● Sparse matrices can be compressed

○ Eliminating the zero values
○ Reduce storage in memory

● Variety of sparse matrix representations

Graph and Sparse - Mat r ix Rep resen t a t ion s
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● Compress across both dimensions
● Hyper-sparse matrices

○ Required to amortized the overhead of the additional indirection level
● Explicit nested parallelism

DCSR/DCSC Representation

[1] Buluc, Aydin, and John R. Gilbert. "On the representation and multiplication of hypersparse matrices." 2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE, 2008.
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● A DCSR representation is 
composed of multiple CSR 
representation

● 2 Explicit parallelism levels:
○ Level 1 – Task/Thread level 

parallelism across the 
external indirection array 

○ Level 2 – Data-level 
parallelism within each sub-
CSR representation

Nested Parallelism in DCSR/DCSC
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● Each thread processes a small unit of a CSR unit
● For demonstration purposes, let’s make the sub-CSR larger

Inner CSR Processing
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● Measure of importance of nodes in a directed 
graph

● Represents a random walk
● Can be implemented as an iterative SpMV
● Common iterative graph processing 

benchmark

Sidenote : PageRan k

Images: https://en.wikipedia.org/wiki/File:PageRanks-Example.jpg
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● Process the internal CSR in a 
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the 

values array
● Perform the required 

operation (multiplication and 
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal
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● View of data parallel accelerators 
as lock-step execution engines
○ No need to dive into µarch

● Number of virtual processors  
proportional to vector length

● Example: vector lengths of 4 => 
4 virtual processors
○ Not necessarily implemented as 4 

functional units.

Virtual Processors View

Virtual Processors View, Figure 2.3, from Vector Microprocessors, PhD dissertation by 
Krste Asanovic



● Stripmining - the most common 
technique for loop vectorization

● Operate over strips of data based 
on the vector-length 

● Why does simple stripmining not 
work for CSR/CSC SpMV?
○ Pointer arrays: load imbalance –

different pointers point to rows of 
different lengths

○ Values array: serialization on AMOs 
– need to accumulate all the values 
of the strip

Stripmining
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● Parallel processing of the pointer 
array (node-centric)

● Problem: Simple stripmining has 
low utilization of virtual 
processors due to load-balancing 
and non-uniform vertex degree 
distribution

● Solution: Pack the row pointers 
(vertices) to maintain high 
utilization of virtual processors
○ Scalar re-packing after every 

stripmining iteration 
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● Parallel processing of the values 
array (edge-centric)

● Problem: Accumulation 
serialization within single vertex

● Solution: Distribute accumulation 
across different vertices by 
processing values array in 
constant intervals (rake)
○ Allows for trivial load-balancing and 

high virtual processor utilization 
without repacking

○ Requires predicated tracking of row 
transitions

Loop Raking
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● GraphMat
○ High-performance parallel graph processing framework
○ Vertex-programming front-end interface mapped to linear algebra backend
○ Uses DCSC/DCSR data-structures
○ Parallelism using OpenMP and MPI
○ Used in other architecture graph processing evaluations

● OpenMP
○ Common shared-memory parallel programming multi-threading model
○ Scalable programming model for multi-processors
○ Compile-time and run-time features
○ Used for outer-level thread parallelism

Evaluation Method – Soft war e St ack



● Rocket Chip SoC generator
○ Configurable SoC parameters such as L2 caches size and processor tiles
○ Real RTL – conclusions directly reflect on test chips and real silicon

● FireSim – cycle-exact FPGA-accelerated simulation on the public cloud
● Why FireSim and Rocket Chip?

○ Full OpenMP and Linux software stack
○ Vector architectures require detailed µarch
○ DDR Memory models – important for sparse data-structures
○ Real RTL – conclusions directly reflect on test chips  and real silicon

Evaluation Method – Har dwar e St ack



Design Space Exploration

● 12 SoC configurations
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Design Space Exploration

● 12 SoC configurations

Name Tiles Vector 
Lanes / 

Tile

L2 
Cache 
Size

T1L1C512 1 1 512
T1L1C1024 1 1 1024

T1L1C2048 1 1 2048

T1L2C512 1 2 512
T1L2C1024 1 2 1024

T1L2C2048 1 2 2048

T2L1C512 2 1 512
T2L1C1024 2 1 1024

T2L1C2048 2 1 2048

T2L2C512 2 2 512
T2L2C1024 2 2 1024

T2L2C2048 2 2 2048

Tile 1 Tile 2



Design Space Exploration



● DCSR Partition Factor
○ Affects granularity of tasks-level parallelism
○ Many tasks/partitions can results in shorter vector length

for the inner parallelism level
○ num_DCSR_partitions = num_hardware_threads x 

DCSR_partition_factor
● Graphs

○ Three graphs from the Stanford Network Analysis Project 
(SNAP)

Software parameters

DCSR 
Partition 

Factor

DCSR 
Partitions
Single-Tile

DCSR 
Partitions
Dual-Tile

1 1 2

2 2 4

4 4 8

8 8 16

16 16 32

Name Vertices Edges Size

wikiVote 7115 103689 433 KB

roadNet-CA 1965206 2766607 18 MB

amazon0302 262111 1234877 5.7 MB



● L2 Cache size does not have an impact 
○ Typical of graph workloads with irregular memory accesses
○ Exception: fitting completely within the cache. wikiVote graph fits in L2 size, so 

demonstrates significantly higher speedup

L2 Cache Size
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● Absolute speedup compared to 
minimal scalar hardware config

● Multiple tiles present near linear 
scaling

● Multi-Tile, Single Lane as an efficient 
design point
○ Single vector lane provides significant 

speedup (greater than the additional 4 
ops/cycles)

○ Additional vector lanes (>1) demonstrate 
smaller overall absolute speedups

Scaling and Absolute Speedup
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2
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le
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Vector Lanes Per Tile1 2



● Relative Speedup compared to the 
parallel-scalar implementation on 
the same hardware configuration

● Single-tile-Dual-lane configuration 
presents higher relative speedup 
compared to dual-tile-single-lane, 
even though they have the same 
overall number of lanes
○ Multi-lane designs have an added 

benefit in conjunction with multi-core 
designs

Tiles vs. Vector Lanes



● Loop-raking can out-perform in all tested hardware configurations, 
depending on software parameter configuration

● Packed-stripmining re-packing overhead

Loop Raking vs. Packed - St r ip m in in g



● Better performance with higher DCSR partition factors
○ Finer grained load-balancing
○ Exception: small wikiVote graph, due to shorter vector lengths and 

overhead

Software DCSR Partition Factor



● Bigger graphs present smaller absolute speedups
○ wikiVote > amazon0302 > roadCA

● Small graph effects (wikiVote)
○ Fitting fully in L2 cache can more than double the speedup
○ Vector unit utilization in PageRank depends on the number of vertices 

with outgoing edges 
■ As opposed to overall graph size
■ wikiVote has 8000 vertices (enough to keep the vector unit utilized with a high 

partition factor), but only 2300 vertices with outgoing edges.
● Tested graphs were not significantly scale-free

○ No observed power-law graph effects

Graph Properties



● Software/Hardware design space exploration
○ Full Linux-based parallel programming software stack
○ Open-source, silicon-proven hardware

● 4x-25x absolute speedup, 2x-14x vectorized relative speedup
● Loop raking is a better technique than packed-stripmining
● Higher DCSR partitions => better load-balancing

○ Assuming the graph is big enough
● Multi-tile, single vector lane configuration as an efficient design point

Conclusions
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