
Alon Amid, Albert Ou, Krste Asanović, Borivoje Nikolić

Nested Parallelism PageRank on
RISC- V Vect or Mu lt i- Processor s

Agenda

Problem Domain
(Graphs/PageRank +
Nested Parallelism)

Silicon-Proven Open
Source Hardware and

Software Implementations
(Rocket + Hwacha +

GraphMat + OpenMP)

FPGA-Accelerated
Simulation
()

SW/HW Design Space Exploration

Full-System Implications

● Graph are everywhere
○ Implicit data-parallelism
○ Irregular data layout

● Usefulness of fixed-function acceleration of graph kernels is debatable
● Use general purpose data-parallel acceleration for graph workloads

○ Maximize the efficiency of data-parallel processors

Graphs

Images: http://netplexity.org/?p=809, http://horicky.blogspot.com/2012/04/basic-graph-analytics-using-igraph.html, http://mathworld.wolfram.com/GraphDiameter.html

http://netplexity.org/?p=809
http://horicky.blogspot.com/2012/04/basic-graph-analytics-using-igraph.html
http://mathworld.wolfram.com/GraphDiameter.html

● Packed-SIMD
○ Register size exposed in the programming model
○ Direct bit-manipulation
○ ISA implications every technology generation change

● GPUs
○ SIMT programming model
○ Throughput-processors, scratchpad memories

● Vector Architectures
○ Vector-length agnostic programming model
○ Additional flexibility in µarch optimization

Common Data - Pa ra lle l Arch it ect u r es

● Intel AVX
○ Small parallelism factor
○ AVX register utilizations size alignments

■ Alternative sparse-matrix representations
to fit AVX registers (Grazelle [1])

● GPUs [2][3]
○ Amortize data-movement between host memory and GPU memory
○ Load balancing between warps and threads

Graphs in Data - Pa r a lle l Ar ch it ect u r es

[1] Making Pull-Based Graph Processing Performant, Samuel Grossman, Heiner Litz and Christos Kozyrakis
[2] Scalable SIMD-Efficient Graph Processing on GPUs, Farzad Khorasani, Rajiv Gupta, Laxmi N. Bhuyan
[3] Multiple works by John Owens (UC Davis)

Photo credits:
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://www.tomshardware.co.uk/why-gpu-pricing-will-drop-further,news-58816.html

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://www.tomshardware.co.uk/why-gpu-pricing-will-drop-further,news-58816.html

● Non-standard RISC-V ISA extension
● Vector-length agnostic

programming model
● Silicon-proven, open-source vector

accelerator
○ Open-sourced at the 1st RISC-V Summit

Hwacha Vect or Arch it ect u r e

● Integrated with Rocket chip
generator

● TileLink cache-coherent memory
system

● Parameterizable multi-lane design

● Decoupled access-execute
● 4 ops/cycle per lane average throughput
● 128 bits/cycle backing memory bandwidth
● 16 KiB SRAM banked register file per lane

○ Max vector length of 2048 double-width
elements

○ Systolic-bank execution
○ 4x128 bits register file bandwidth

Hwacha Vect or Arch it ect u r e

● Data-parallel accelerators +
multi-processors

● Mixing parallelism properties
○ Task level parallelism –

flexible, but expensive
○ Data level parallelism -

efficient, but rigid
● Many design points,

both SW and HW
● How to partition?

Nested Parallelism

● Graphs commonly represented as:
○ Adjacency lists
○ Adjacency matrices

● Adjacency matrix is usually a sparse matrix
● Sparse matrices can be compressed

○ Eliminating the zero values
○ Reduce storage in memory

● Variety of sparse matrix representations

Graph and Sparse - Mat r ix Rep resen t a t ion s

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

values

row_indices

column_indices

0 1 3 3 3 3 5 6 7 7

1 1 0 2 6 7 7 6 1 7

81 5 61 9 34 11 42 17 92 70
COO

Graph and Sparse - Mat r ix Rep resen t a t ion s

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

values

row_indices

column_indices

0 1 3 3 3 3 5 6 7 7

1 1 0 2 6 7 7 6 1 7

81 5 61 9 34 11 42 17 92 70

1 1 0 2 6 7 7 6 1 7

81 5 61 9 34 11 42 17 92 70

0 1 2 2 6 6 7 8 10

values

row_pointers

column_indices

COO

CSR

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

Graph and Sparse - Mat r ix Rep resen t a t ion s

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

values

row_indices

column_indices

0 1 3 3 3 3 5 6 7 7

1 1 0 2 6 7 7 6 1 7

81 5 61 9 34 11 42 17 92 70

1 1 0 2 6 7 7 6 1 7

81 5 61 9 34 11 42 17 92 70

0 1 2 2 6 6 7 8 10

values

row_pointers

column_indices

3 0 1 7 3 3 6 3 5 7

61 81 5 92 9 34 17 11 42 70

0 1 4 5 5 5 5 7 10

values

row_indices

column_pointers

COO

CSR

CSC

0 81 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 0 0 0 0 0 0

61 0 9 0 0 0 34 11

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 42

0 0 0 0 0 0 17 0

0 92 0 0 0 0 0 70

Graph and Sparse - Mat r ix Rep resen t a t ion s

● Compress across both dimensions
● Hyper-sparse matrices

○ Required to amortized the overhead of the additional indirection level
● Explicit nested parallelism

DCSR/DCSC Representation

[1] Buluc, Aydin, and John R. Gilbert. "On the representation and multiplication of hypersparse matrices." 2008 IEEE International Symposium on Parallel and Distributed Processing. IEEE, 2008.

1 2 4 6 8 2 6 1 4 7

61 81 5 92 9 34 17 11 42 70

0 1 6 7

0 1 5 7 10

values

column_indices

row_indices

0 2 5row_starts

row_ptrs

0 61 0 0 0 0 0 0

0 0 81 0 5 0 92 9

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 34 0 0 0 17 0

0 11 0 0 42 0 0 70

● A DCSR representation is
composed of multiple CSR
representation

● 2 Explicit parallelism levels:
○ Level 1 – Task/Thread level

parallelism across the
external indirection array

○ Level 2 – Data-level
parallelism within each sub-
CSR representation

Nested Parallelism in DCSR/DCSC

1 2 4 6 8 2 6 1 4 7

61 81 5 92 9 34 17 11 42 70

0 1 6 7

0 1 5 7 10

values

column_indices

row_indices

0 2 5row_starts

row_ptrs

Thread 0 Thread 1

● Each thread processes a small unit of a CSR unit
● For demonstration purposes, let’s make the sub-CSR larger

Inner CSR Processing

1 2 4 6 8

61 81 5 92 9

0 1

0 1

values

row_indices

0row_starts

row_ptrs

column_indices 1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

Thread 0

● Measure of importance of nodes in a directed
graph

● Represents a random walk
● Can be implemented as an iterative SpMV
● Common iterative graph processing

benchmark

Sidenote : PageRan k

Images: https://en.wikipedia.org/wiki/File:PageRanks-Example.jpg

https://en.wikipedia.org/wiki/File:PageRanks-Example.jpg

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● Process the internal CSR in a
simple scalar loop

● Traverse the pointers array
● Follow the pointer to the

values array
● Perform the required

operation (multiplication and
accumulation for SpMV)

Simple Scalar Sparse Matrix Traversal

p1

p1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

● View of data parallel accelerators
as lock-step execution engines
○ No need to dive into µarch

● Number of virtual processors
proportional to vector length

● Example: vector lengths of 4 =>
4 virtual processors
○ Not necessarily implemented as 4

functional units.

Virtual Processors View

Virtual Processors View, Figure 2.3, from Vector Microprocessors, PhD dissertation by
Krste Asanovic

● Stripmining - the most common
technique for loop vectorization

● Operate over strips of data based
on the vector-length

● Why does simple stripmining not
work for CSR/CSC SpMV?
○ Pointer arrays: load imbalance –

different pointers point to rows of
different lengths

○ Values array: serialization on AMOs
– need to accumulate all the values
of the strip

Stripmining

vp1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp1 vp2 vp3 vp4

vp2 vp3 vp4

● Parallel processing of the pointer
array (node-centric)

● Problem: Simple stripmining has
low utilization of virtual
processors due to load-balancing
and non-uniform vertex degree
distribution

● Solution: Pack the row pointers
(vertices) to maintain high
utilization of virtual processors
○ Scalar re-packing after every

stripmining iteration

Packed St r ip m in in g

vp1

vp1

0 1 5 8packed_row_ptrs

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp2 vp3 vp4

vp1 vp2 vp3 vp4

vp2 vp3 vp4

● Parallel processing of the pointer
array (node-centric)

● Problem: Simple stripmining has
low utilization of virtual
processors due to load-balancing
and non-uniform vertex degree
distribution

● Solution: Pack the row pointers
(vertices) to maintain high
utilization of virtual processors
○ Scalar re-packing after every

stripmining iteration

Packed St r ip m in in g

vp1

vp1

9 1 5 11

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp2 vp3 vp4

vp1vp2 vp3 vp4

vp2 vp3 vp4

packed_row_ptrs

● Parallel processing of the pointer
array (node-centric)

● Problem: Simple stripmining has
low utilization of virtual
processors due to load-balancing
and non-uniform vertex degree
distribution

● Solution: Pack the row pointers
(vertices) to maintain high
utilization of virtual processors
○ Scalar re-packing after every

stripmining iteration

Packed St r ip m in in g

vp1

vp1

9 1 5 -

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp2 vp3 vp4

vp1vp2 vp3 vp4

vp2 vp3

idle

packed_row_ptrs

● Parallel processing of the pointer
array (node-centric)

● Problem: Simple stripmining has
low utilization of virtual
processors due to load-balancing
and non-uniform vertex degree
distribution

● Solution: Pack the row pointers
(vertices) to maintain high
utilization of virtual processors
○ Scalar re-packing after every

stripmining iteration

Packed St r ip m in in g

vp1

- 1 - -

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp2 vp3 vp4

vp2
vp1,

vp3,vp4

idle

packed_row_ptrs

● Parallel processing of the pointer
array (node-centric)

● Problem: Simple stripmining has
low utilization of virtual
processors due to load-balancing
and non-uniform vertex degree
distribution

● Solution: Pack the row pointers
(vertices) to maintain high
utilization of virtual processors
○ Scalar re-packing after every

stripmining iteration

Packed St r ip m in in g

vp1

- - - -

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp2 vp3 vp4

vp1,vp2
vp3,vp4

idle

packed_row_ptrs

● Parallel processing of the values
array (edge-centric)

● Problem: Accumulation
serialization within single vertex

● Solution: Distribute accumulation
across different vertices by
processing values array in
constant intervals (rake)
○ Allows for trivial load-balancing and

high virtual processor utilization
without repacking

○ Requires predicated tracking of row
transitions

Loop Raking

vp1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp1 vp2 vp3 vp4

vp2 vp3 vp4

Loop Raking

vp1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp3 vp4

vp2 vp3 vp4

vp1,
vp2

● Parallel processing of the values
array (edge-centric)

● Problem: Accumulation
serialization within single vertex

● Solution: Distribute accumulation
across different vertices by
processing values array in
constant intervals (rake)
○ Allows for trivial load-balancing and

high virtual processor utilization
without repacking

○ Requires predicated tracking of row
transitions

Loop Raking

vp1

1 2 4 6 8 14 15 27 43 51 53 60

61 81 5 92 9 3 44 2 17 18 10 44

0 1 7 12 21 30

0 1 5 8 9 11

values

row_indices

row_ptrs

column_indices

vp1,
vp2 vp3 vp4

vp2 vp3 vp4

● Parallel processing of the values
array (edge-centric)

● Problem: Accumulation
serialization within single vertex

● Solution: Distribute accumulation
across different vertices by
processing values array in
constant intervals (rake)
○ Allows for trivial load-balancing and

high virtual processor utilization
without repacking

○ Requires predicated tracking of row
transitions

● GraphMat
○ High-performance parallel graph processing framework
○ Vertex-programming front-end interface mapped to linear algebra backend
○ Uses DCSC/DCSR data-structures
○ Parallelism using OpenMP and MPI
○ Used in other architecture graph processing evaluations

● OpenMP
○ Common shared-memory parallel programming multi-threading model
○ Scalable programming model for multi-processors
○ Compile-time and run-time features
○ Used for outer-level thread parallelism

Evaluation Method – Soft war e St ack

● Rocket Chip SoC generator
○ Configurable SoC parameters such as L2 caches size and processor tiles
○ Real RTL – conclusions directly reflect on test chips and real silicon

● FireSim – cycle-exact FPGA-accelerated simulation on the public cloud
● Why FireSim and Rocket Chip?

○ Full OpenMP and Linux software stack
○ Vector architectures require detailed µarch
○ DDR Memory models – important for sparse data-structures
○ Real RTL – conclusions directly reflect on test chips and real silicon

Evaluation Method – Har dwar e St ack

Design Space Exploration

● 12 SoC configurations

Name Tiles Vector
Lanes /

Tile

L2
Cache
Size

T1L1C512

T1L1C1024

T1L1C2048

T1L2C512

T1L2C1024

T1L2C2048

T2L1C512

T2L1C1024

T2L1C2048

T2L2C512

T2L2C1024

T2L2C2048

Design Space Exploration

● 12 SoC configurations

Name Tiles Vector
Lanes /

Tile

L2
Cache
Size

T1L1C512 1
T1L1C1024 1

T1L1C2048 1

T1L2C512 1
T1L2C1024 1

T1L2C2048 1

T2L1C512 2
T2L1C1024 2

T2L1C2048 2

T2L2C512 2
T2L2C1024 2

T2L2C2048 2

Tile 1 Tile 2

Design Space Exploration

● 12 SoC configurations

Name Tiles Vector
Lanes /

Tile

L2
Cache
Size

T1L1C512 1 1
T1L1C1024 1 1

T1L1C2048 1 1

T1L2C512 1 2
T1L2C1024 1 2

T1L2C2048 1 2

T2L1C512 2 1
T2L1C1024 2 1

T2L1C2048 2 1

T2L2C512 2 2
T2L2C1024 2 2

T2L2C2048 2 2

Tile 1 Tile 2

Design Space Exploration

● 12 SoC configurations

Name Tiles Vector
Lanes /

Tile

L2
Cache
Size

T1L1C512 1 1 512
T1L1C1024 1 1 1024

T1L1C2048 1 1 2048

T1L2C512 1 2 512
T1L2C1024 1 2 1024

T1L2C2048 1 2 2048

T2L1C512 2 1 512
T2L1C1024 2 1 1024

T2L1C2048 2 1 2048

T2L2C512 2 2 512
T2L2C1024 2 2 1024

T2L2C2048 2 2 2048

Tile 1 Tile 2

Design Space Exploration

● DCSR Partition Factor
○ Affects granularity of tasks-level parallelism
○ Many tasks/partitions can results in shorter vector length

for the inner parallelism level
○ num_DCSR_partitions = num_hardware_threads x

DCSR_partition_factor
● Graphs

○ Three graphs from the Stanford Network Analysis Project
(SNAP)

Software parameters

DCSR
Partition

Factor

DCSR
Partitions
Single-Tile

DCSR
Partitions
Dual-Tile

1 1 2

2 2 4

4 4 8

8 8 16

16 16 32

Name Vertices Edges Size

wikiVote 7115 103689 433 KB

roadNet-CA 1965206 2766607 18 MB

amazon0302 262111 1234877 5.7 MB

● L2 Cache size does not have an impact
○ Typical of graph workloads with irregular memory accesses
○ Exception: fitting completely within the cache. wikiVote graph fits in L2 size, so

demonstrates significantly higher speedup

L2 Cache Size

1

2

Ve
ct

or
 L

an
es

L2 Cache Size
512 KB 1024 KB 2048 KB

1

2

Ti
le

s

L2 Cache Size
512 KB 1024 KB 2048 KB

● Absolute speedup compared to
minimal scalar hardware config

● Multiple tiles present near linear
scaling

● Multi-Tile, Single Lane as an efficient
design point
○ Single vector lane provides significant

speedup (greater than the additional 4
ops/cycles)

○ Additional vector lanes (>1) demonstrate
smaller overall absolute speedups

Scaling and Absolute Speedup

1

2

Ti
le

s

Vector Lanes Per Tile1 2

● Relative Speedup compared to the
parallel-scalar implementation on
the same hardware configuration

● Single-tile-Dual-lane configuration
presents higher relative speedup
compared to dual-tile-single-lane,
even though they have the same
overall number of lanes
○ Multi-lane designs have an added

benefit in conjunction with multi-core
designs

Tiles vs. Vector Lanes

● Loop-raking can out-perform in all tested hardware configurations,
depending on software parameter configuration

● Packed-stripmining re-packing overhead

Loop Raking vs. Packed - St r ip m in in g

● Better performance with higher DCSR partition factors
○ Finer grained load-balancing
○ Exception: small wikiVote graph, due to shorter vector lengths and

overhead

Software DCSR Partition Factor

● Bigger graphs present smaller absolute speedups
○ wikiVote > amazon0302 > roadCA

● Small graph effects (wikiVote)
○ Fitting fully in L2 cache can more than double the speedup
○ Vector unit utilization in PageRank depends on the number of vertices

with outgoing edges
■ As opposed to overall graph size
■ wikiVote has 8000 vertices (enough to keep the vector unit utilized with a high

partition factor), but only 2300 vertices with outgoing edges.
● Tested graphs were not significantly scale-free

○ No observed power-law graph effects

Graph Properties

● Software/Hardware design space exploration
○ Full Linux-based parallel programming software stack
○ Open-source, silicon-proven hardware

● 4x-25x absolute speedup, 2x-14x vectorized relative speedup
● Loop raking is a better technique than packed-stripmining
● Higher DCSR partitions => better load-balancing

○ Assuming the graph is big enough
● Multi-tile, single vector lane configuration as an efficient design point

Conclusions

● Colin Schmidt
● The information, data, or work presented herein was funded in part by

the Advanced Research Projects Agency-Energy (ARPA-E), U.S.
Department of Energy, under Award Number DE-AR0000849. Research
was partially funded by ADEPT Lab industrial sponsor Intel, under the
Agile ISTC, and ADEPT Lab affiliates Google, Siemens, and SK Hynix.
The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof

Acknowledgments

Questions/Comments

	Nested Parallelism PageRank on RISC-V Vector Multi-Processors
	Agenda
	Graphs
	Common Data-Parallel Architectures
	Graphs in Data-Parallel Architectures
	Hwacha Vector Architecture
	Hwacha Vector Architecture
	Nested Parallelism
	Graph and Sparse-Matrix Representations
	Graph and Sparse-Matrix Representations
	Graph and Sparse-Matrix Representations
	Graph and Sparse-Matrix Representations
	DCSR/DCSC Representation
	Nested Parallelism in DCSR/DCSC
	Inner CSR Processing
	Sidenote: PageRank
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Simple Scalar Sparse Matrix Traversal
	Virtual Processors View
	Stripmining
	Packed Stripmining
	Packed Stripmining
	Packed Stripmining
	Packed Stripmining
	Packed Stripmining
	Loop Raking
	Loop Raking
	Loop Raking
	Evaluation Method – Software Stack
	Evaluation Method – Hardware Stack
	Design Space Exploration
	Design Space Exploration
	Design Space Exploration
	Design Space Exploration
	Design Space Exploration
	Software parameters
	L2 Cache Size
	Scaling and Absolute Speedup
	Tiles vs. Vector Lanes
	Loop Raking vs. Packed-Stripmining
	Software DCSR Partition Factor
	Graph Properties
	Conclusions
	Acknowledgments
	Questions/Comments

