Finger Finder: A Low-Energy Peak Detection
Accelerator for Capacitive Touch Controllers

®Mywo As @NTNU

Norwegian University of
Science and Technology

Touch screens everywhere

-
:

Home

A G R N

Work

PREYSAGHT 1liniVishor MSOIIUIAT Vi s Ouusmemsms 550100

Touch screen controllers, process touch or sleep

* Peak detection is the first algorithm run on the acquired touch screen image

\ 4 \ 4

Go to sleep Process touch

Touch screens, Finger Finder

* Finger finder (FF-N) HW accelerator
* Compared to the best compiled C-code solution, FF-N reduces the energy consumption with
86%
* 9.5% above a theoretical lower bound for energy consumption

o o SW-N v FF-N a O

= 10.0 5

= T':)_

o0

v 5.07
L]

. 2.5

Y a v
<t 0.0 —

2500 5000 7500 10000 12500 15000 17500

Average Execution Time (cycles)

Outline

e Introduction
e Peak detection in SW
* Finger Finder

Why make a touch screen controller ASIC?

FPGA with
CPU, 10 and
custom DSP

Analog
front-end
daughter
cards

Touch
screen

aXiom touch screen
controller

MyWo AS - designing high performance touch controllers

* Targeting industrial and automotive
applications
* Noisy environments require higher SnR
* 3D touch
* Force sensing
* Haptics feedback

e Need a 32-bit CPU with mul+div

Why using RISC-V in the MyWo touch screen controller?

* Using the Rocket Chip generator

* Speed
* Cost
* Flexibility
* Design time
pE)ICSeCs_s\f)r DMA Communication

with RAM modules

3 Y Y 1

¢ >
Capacitive Analog
Touch —>> backend/ —> S?:?goc:;ta
Sensor DSP

Reducing power consumption in touch controllers

* Periodically scans the touch screen
* Analog dominates first
* Then digital when processing

Current

* Go to sleep quickly

Early exit when no touch detected Time

v

(Common case)

A

- Image S
Capacitive . Application
Noise Peak ——> Feature
Touch ——> . —>> ea , . ——>> Processor
S Sensor Reduction Image Detection ——> Extraction Features .
ensor Data ERE Communication

Image Acquisition (1A) Image Post-Processing (IPP)

Why peak detection?

* Selected when we had the FPGA prototype
* The feature extraction was not complete

* Peak detection dominated the image post-processing
* The CPU ran at half of the speed of the aXiom chip

* The analog current consumption was not known

* Many devices run the touch controller when the screen is off
* Knock to wake up
* Gestures to perform functions while off

Outline

* Peak detection in SW
* Finger Finder

Peak detection

_ _ _ 14|21
* Detect local maxima in a 2D image = 9 g | 4
* Above a noise threshold 3171716
* Peak if center is greater or equal to neighbors > 3|58

* If one or more of the neighbor nodes are equal to the center pealk,
increment the center
* Avoiding a large number of peaks for plateaus

1|42 1|4]2

31719 31719

5198

Peak detection algorithms, SW-N

* The naive implementation:

for (Down = DownOffset; (Down == (Max Down -1)) &5 (TotalPeaksFound < MaxPeaks); Down++)

{

for (Across = AcrossOffset; Across == (Max Across -1); Across++)

{

if ((RawData[Down] [Across] == MinimumSignal) &&

(RawData[Down+3] [Across-1] == RawData[Down][Across]) &&
(RawData[Down+0] [Across+1] <= RawData[Down][Across]) &&
(RawData[Down-1] [Across+0] == RawData[Down][Across]) &&
(RawData[Down+1] [Across+0] == RawData[Down] [Across]) &&
(RawData[Down-1] [Across-1] <= RawData[Down][Across]) &&
(RawData[Down-1] [Across+1] <= RawData[Down][Across]) &&
(RawData[Down+1] [Across-1] <= RawData[Down][Across]) &&
(RawData[Down+1] [Across+1] <= RawData[Down][Across]))

Peak detection algorithms, SW-C, SW-N16, SW-T

* Three other software algorithms were developed:
 SW-C will cache the 8 neighbor nodes to reduce the number of memory loads

 SW-T will only keep the cache updated if the current node is over the threshold

 SW-N16 tries to take advantage of the 16-bit values stored in a 32-bit RAM and reads
two and two values for each load

e QOtherwise similar to SW-N

* Theoretical lower bound
* O (Oracle) loads a node from RAM and knows if it is a peak or not.

Test patterns

* 70 test patterns
* 31 acquired from the FPGA prototype
* 39 synthetically generated patterns

v
!
2,

Test method

* Test method R
* Simulated on the aXiom chip RTL code fj j |
e RTL current estimation tool .~]

* Measured the actual current
consumption on the aXiom prototype

* Compared against the simulated

SW results

* The results are data dependent

[1SW-N [1SW-C CASW-T 1 SW-N16

Norm. Exec. Time
- O — — DD
= o o ot O

PF-1F-11 |

PF-2F-1-
PF-5F-1

SW results

* The SW-N algorithm performs best overall
 The SW-C algorithm is impacted by keeping alive the cache all the time
 The SW-T and SW-N16 algorithms performs worse when there are nodes over the

threshold

— 90 a SW-N v SW-C s SW-T a SW-N16 .
<15 v A
E Fa

v 10+ o

W | il

- o

< oL*®

5000 10000 15000 20000 25000 30000 35000

Average Execution Time (cycles)

* Simulated current consumption correlates with the measured

Outline

* Finger Finder

Assembly optimizing, RoCC or HW accelerator?

* Looked into assembly optimizing the code

400001ea: 43d4

400001ec: feabeae3
40000170 : p007aB03
40000174 : ffobebe3

40000178 0087a303

bltu
Tw
bltu
lw

a3,4(ab)

a3,ald,400001e0 <FindPeaks+0x80>

as, D[as}

a3,ab,400001ed <FindPeaks+0x80=>

tl,8(a5)

* Looked into making a Rocket Custom Coprocessor via the RoCC

interface

* Decided to go for a HW accelerator tied to the sensor data memory

RISC-V

Communication

Capacitive
Touch
Sensor

processor DMA
with RAM modules
Y >
A
Analog Sensor data
> bagléepnd/ memory 1

20

Peak detection algorithms, FF-N

New center Compare center node

° |mp|emented the SW-N node against neighbors
algorithm as a FSM with direct

access to the sensor node data C)<
RAM

* When a peak is found the FSM
writes the location to a list of

peaks in the RAM (

Write peak
to RAM

21

Peak detection algorithms, FF-C

Starton a Initialize the
* The FF-C accelerator stores all 8 few line cache
neighbors in a register bank
« When going to a new center node q\ J

the register bank is shifted and
three new values are loaded into
the bank

Write peak New center node,
to RAM update cache

22

Final results

* Finger finder (FF-N) has the best
performance

S JISW-N [JSW-C [ISW-T [CISW-N16 [FF-N [FF-C [O

4

. o
| I -

—_ =

~
e
1

0+

. e
e
1

Norm. Exec. Time

|
|
i

PF-1F-1
PF-2F-11
PF-5F-1

Final results

* Compared SW-N, FF-N reduces the
energy consumption with 86%

* 9.5% above the oracle (O)

902 SW-N v SW-C a SW-T <« SW-N16 » FF-N e FF-C O
—_ 2zl
=
= 15 . <
20 A
GC'J l{)] e}
L
. 5
a0
< oL—8=° . . . , | |
| 5000 10000 15000 20000 25000 30000 35000

Average Execution Time (cycles)

Final results

* Area impact is small
* No changes in critical path

X
o
=]
-

NORMALIZED AREA

ROCKET CHIP CPU

AREA COMPARISON

3%

FF-N

6%

FF-

25

Conclusions

e Of the software algorithms, the naive implementation performs
best

* With the Finger Finder HW accelerator we can speed up the peak
detection and reduce the power consumption considerable
compared to the best SW algorithm

Thank you

Any questions?

& ONTNU
@ Mywo AS .,.*;:“ﬁ::: | Norwegian University of

Science and Technology

