
Finger Finder: A Low-Energy Peak Detection
Accelerator for Capacitive Touch Controllers

Kai Kristian Amundsen (MyWo AS), Gaute Myklebust (MyWo AS),

Per Gunnar Kjeldsberg (NTNU) and Magnus Jahre (NTNU)

Third Workshop on Computer Architecture Research with RISC-V (CARRV 2019)
Saturday June 22nd, 2019

1

Touch screens everywhere

2

Home Work

Touch screen controllers, process touch or sleep

• Peak detection is the first algorithm run on the acquired touch screen image

Go to sleep Process touch

3

Touch screens, Finger Finder
• Finger finder (FF-N) HW accelerator

• Compared to the best compiled C-code solution, FF-N reduces the energy consumption with
86%

• 9.5% above a theoretical lower bound for energy consumption

4

Outline

• Introduction

• Peak detection in SW

• Finger Finder

5

Why make a touch screen controller ASIC?

FPGA with
CPU, IO and
custom DSP

Analog
front-end
daughter
cards

Touch
screen

aXiom touch screen
controller

6

MyWo AS - designing high performance touch controllers

• Targeting industrial and automotive
applications
• Noisy environments require higher SnR

• 3D touch

• Force sensing

• Haptics feedback

• Need a 32-bit CPU with mul+div

7

Why using RISC-V in the MyWo touch screen controller?

• Using the Rocket Chip generator
• Speed

• Cost

• Flexibility

• Design time

8

Reducing power consumption in touch controllers

• Periodically scans the touch screen

• Analog dominates first

• Then digital when processing

• Go to sleep quickly

Time

C
u

rr
en

t Analog

DSP P
D

Feature
extraction

9

Why peak detection?

• Selected when we had the FPGA prototype
• The feature extraction was not complete

• Peak detection dominated the image post-processing
• The CPU ran at half of the speed of the aXiom chip

• The analog current consumption was not known

• Many devices run the touch controller when the screen is off
• Knock to wake up

• Gestures to perform functions while off

10

Outline

• Introduction

• Peak detection in SW

• Finger Finder

11

Peak detection

• Detect local maxima in a 2D image
• Above a noise threshold

• Peak if center is greater or equal to neighbors

• If one or more of the neighbor nodes are equal to the center peak,
increment the center
• Avoiding a large number of peaks for plateaus

1 4 2 1

5 9 8 4

3 7 7 6

2 3 5 8

1 4 2

5 9 8

3 7 9

1 4 2

5 10 8

3 7 9
12

Peak detection algorithms, SW-N

• The naive implementation:

13

Peak detection algorithms, SW-C, SW-N16, SW-T

• Three other software algorithms were developed:
• SW-C will cache the 8 neighbor nodes to reduce the number of memory loads

• SW-T will only keep the cache updated if the current node is over the threshold

• SW-N16 tries to take advantage of the 16-bit values stored in a 32-bit RAM and reads
two and two values for each load
• Otherwise similar to SW-N

• Theoretical lower bound
• O (Oracle) loads a node from RAM and knows if it is a peak or not.

14

Test patterns

• 70 test patterns
• 31 acquired from the FPGA prototype

• 39 synthetically generated patterns

15

Test method

• Test method
• Simulated on the aXiom chip RTL code

• RTL current estimation tool

• Measured the actual current
consumption on the aXiom prototype
• Compared against the simulated

16

SW results

• The results are data dependent

17

SW results

• The SW-N algorithm performs best overall
• The SW-C algorithm is impacted by keeping alive the cache all the time
• The SW-T and SW-N16 algorithms performs worse when there are nodes over the

threshold

• Simulated current consumption correlates with the measured

18

Outline

• Introduction

• Peak detection in SW

• Finger Finder

19

Assembly optimizing, RoCC or HW accelerator?

• Looked into assembly optimizing the code

• Looked into making a Rocket Custom Coprocessor via the RoCC
interface

• Decided to go for a HW accelerator tied to the sensor data memory

20

Peak detection algorithms, FF-N

• Implemented the SW-N
algorithm as a FSM with direct
access to the sensor node data
RAM

• When a peak is found the FSM
writes the location to a list of
peaks in the RAM

Compare center node
against neighbors

Write peak
to RAM

New center
node

21

Peak detection algorithms, FF-C

• The FF-C accelerator stores all 8
neighbors in a register bank
• When going to a new center node

the register bank is shifted and
three new values are loaded into
the bank

Write peak
to RAM

New center node,
update cache

Initialize the
cache

Start on a
new line

22

Final results

• Finger finder (FF-N) has the best
performance

23

Final results

• Compared SW-N, FF-N reduces the
energy consumption with 86%

• 9.5% above the oracle (O)

24

Final results

• Area impact is small
• No changes in critical path

1
0

0
%

3
% 6

%

R O C K E T C H I P C P U F F - N F F - C

N
O

R
M

A
LI

ZE
D

 A
R

EA

AREA COMPARISON

25

Conclusions

• Of the software algorithms, the naïve implementation performs
best

• With the Finger Finder HW accelerator we can speed up the peak
detection and reduce the power consumption considerable
compared to the best SW algorithm

26

Thank you

Any questions?

This work has been supported by RFF Midt-Norge (project 272179).

27

Finger Finder: A Low-Energy Peak Detection Accelerator
for Capacitive Touch Controllers

• Kai Kristian Amundsen (MyWo AS), Gaute Myklebust (MyWo AS),

• Per Gunnar Kjeldsberg (NTNU) and Magnus Jahre (NTNU)

