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Abstract

Deep neural networks have been extensively adopted for a myr-
iad of applications due to their ability to learn patterns from large
amounts of data. The desire to preserve user privacy and reduce
user-perceived latency has created the need to perform deep neu-
ral network inference tasks on low-power consumer edge devices.
Since such tasks often tend to be computationally intensive, of-
floading this compute from mobile/embedded CPU to a purpose-
designed "Neural Processing Engines" is a commonly adopted so-
lution for accelerating deep learning computations. While these
accelerators offer significant speed-ups for key machine learning
kernels, overheads resulting from frequent host-accelerator com-
munication often diminish the net application-level benefit of this
heterogeneous system. Our solution for accelerating such work-
loads involves developing ISA extensions customized for machine
learning kernels and designing a custom in-pipeline execution unit
for these specialized instructions. We base our ISA extensions on
RISC-V: an open ISA specification that lends itself to such special-
izations. In this paper, we present the software infrastructure for
optimizing neural network execution on RISC-V with ISA exten-
sions. Our ISA extensions are derived from the RISC-V Vector ISA
proposal, and we develop optimized implementations of the critical
kernels such as convolution and matrix multiplication using these
instructions. These optimized functions are subsequently added to
the TensorFlow Lite source code and cross-compiled for RISC-V.
We find that only a small set of instruction extensions achieves
coverage over a wide variety of deep neural networks designed for
vision and speech-related tasks. On average, our software imple-
mentation using the extended instructions set reduces the executed
instruction count by 8X in comparison to baseline implementation.
In parallel, we are also working on the hardware design of the in-
pipeline machine learning accelerator. We plan to open-source our
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software modifications to TF Lite, as well as the micro-architecture
design in due course.

Keywords
Deep Learning, RISC-V Vector ISA extension, TensorFlow Lite

1 Introduction

Recent developments in deep learning have led to a resurgence in
artificial intelligence. Various cognitive tasks such as image recog-
nition [19, 23], speech recognition [31], and natural language pro-
cessing [6, 20] extensively use deep neural networks. As these "in-
telligent applications" pervade into mobile/Internet of Things (IoT)
platforms, there is a growing demand for efficient execution of deep
neural networks on these low-power and resource-constrained plat-
forms. However, state-of-the-art neural networks routinely have
millions of parameters and a single inference task can invoke bil-
lions of arithmetic operations and memory accesses. Offloading
the neural network execution to a dedicated hardware accelerator
has emerged as a widely adopted solution for improving the execu-
tion time and energy efficiency. Manifestations of this concept are
abundant: the Apple A12 Bionic [27] that has an Integrated Neural
Processing Unit, the Qualcomm SD 855 that has a Hexagon DSP
[5, 12] and an integrated Neural Processing Unit, Huawei’s Kirin
980 SoC that has a Dual Neural Processing Unit [3], and Samsung
Exynos 9820, that has an integrated Neural Processing Unit [4].

A heterogeneous solution comprised of accelerators and CPU
often requires partitioning the work between the host CPU and
the neural accelerator(s) and may trigger frequent host-accelerator
communications. Consider a canonical machine learning applica-
tion that comprises of a) pre-processing the inputs to render them
consumable by a neural network, b) running a neural network
inference using these inputs, and c) post-processing the predic-
tions generated by the network. The net application-level speed-up
is determined by the relative computational complexities of the
components listed above as well as the overheads associated with
communication between the host and the accelerator. Applications
that involve frequent data and/or control exchanges between the
host and accelerator land up severely under-utilizing the accelerator
and may not see a net benefit of offloading work from the host.

In this paper, we present our work on developing a solution
that seeks to eliminate these overheads that surface in a typical
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Figure 1: Overview of the Software infrastructure. ‘Intrinsics’ are implemented using C inline assembly functions.

heterogeneous system. Our solution hinges on developing ISA ex-
tensions customized for machine learning kernels and designing
a custom in-pipeline execution unit for these specialized instruc-
tions. To explore this idea, as a first step, we developed the software
infrastructure to support custom domain specific ISA extension
for machine learning. We used the open source RISC-V ISA as our
target ISA [8, 30]. RISC-V ISA consists of a base Integer (I) ISA
which is mandatory for every RISC-V core implementation, and
optional extensions to the base ISA. The capability of ISA-level
customization provides an opportunity to specialize our processor
designs for machine learning workloads.

To effectively accelerate ML on RISC-V processors, our ISA ex-
tensions are derived from the RISC-V vector ISA proposal [22].
We selected a subset of the instructions necessary to implement
the key machine learning kernels. We developed the tool-chain
by augmenting the software environment with the right inline as-
sembly support and building the run-time that can effectively map
the high-level macros to the low-level ISA execution. We added
basic compiler support for the extended instructions using C inline
assembly functions. The C inline assembly functions are used to
implement TensorFlow Lite [1] kernel operations such as convolu-
tion and matrix multiplication. We added these optimized functions
to TensorFlow Lite source code and cross-compiled them for RISC-
V target. We modified Spike [7], an instruction set simulator, to
support the extended instructions. Subsequently, we used Spike
for functional verification and for benchmarking machine learning
models. We use the executed instruction count as the metric to
compare the modified RISC-V ISA with ARM v-8A with NEON
Advanced SIMD extensions [21].

2 Software Environment

We present our infrastructure for building TensorFlow Lite for RISC-
V target (Figure 1). As part of the software infrastructure, we have
implemented a subset of instructions from RISC-V V ISA extension
(draft v0.5) [22]. Table 1 shows the list of supported instructions.
These instructions are supported using C inline assembly functions.
We provide detailed description of modifications to the compiler
tool-chain, Spike and TensorFlow Lite in the following subsections.

2.1 Compiler support for ISA extensions

We use inline assembly functions to enable vector instruction sup-
port. The functions are known to the compiler and are mapped to

a sequence of one or more assembly instructions. For example, the
code snippet in Listing 1 shows the implementation of the vector
load template function. The function loads an array of elements to
the vector register “va1”. The number of elements to load is config-
ured at run-time by setting two Control Status Register (CSR), i.e.,
vcfg and vl as required by the RISC-V V ISA extension.

Listing 1: A function to load vector elements.

template <class T>
inline void __VectorLoadInput(const T* load_address) {
asm volatile("vls val, 0(%0), v \t\n"
: : "r"(load_address));

The C inline assembly functions are compiled into assembly code
using the RISC-V GCC tool-chain. The assembly code is then con-
verted into machine code using GNU assembler (GAS) [11]. GAS is
implemented in two sections, the front-end that handles the pars-
ing of assembly code and the back-end that generates the machine
code. We added support for each of the instructions in Table 1 in
the GAS front-end to parse the extended instructions and check if
the instruction has a valid opcode and operands. Subsequently, the
GAS back-end generates the corresponding machine code for the
extended instructions. We then modified the Spike ISA simulator
to verify the functionality of the extended instructions.

2.2 Instruction simulation support on Spike ISS

Spike is a RISC-V Instruction Set Simulator (ISS) [7] and imple-
ments a functional model of RISC-V processor. Spike is a functional
simulator that ignores internal delays such as I/O accesses or mem-
ory transactions. Therefore, the simulations are not cycle accurate.
Spike executes a user space program using proxy kernel for han-
dling the system calls from a C standard library functions.

To support the simulation of the instructions in Table 1, we mod-
ified the Spike simulator. We extended the class regfile_t with
vector registers and macros to read/write values to the registers.
In order to load/store data from memory, we extended the class
mmu_t with macros for loading/storing multiple data from memory.
Similar to the scalar pipeline, a memory request is handled by the
TLB unit in Spike.

We also modified the class processor_t to configure the two
vector CSRs; vefg CSR and v1 CSR. As specified in RISC-V Vector
ISA extension [22], the vcfg CSR configures the vector unit by
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Table 1: The subset of RISC-V Vector ISA extension [22] implemented in our software ecosystem.

Inst. Type Instructions

Function

vls{b,h,s,d} VR, RS1, RS2, m

Ix{b,h
Memory aceess vix{bh,s,d} VR, RS, VRS, m

Loads a vector into VR; from memory address in RS;
with unit/const stride in RS or indexed stride in VRS,

vss{b,h,s,d} VRS3, RS1, RSz, m
vsx{b,h,s,d} VRSs, RS1, VRS, m

Stores a vector in VRS3 to memory address in RSy
with unit/const stride in RSy or with indexed stride in VRS,

vadd VRd, VRSl, VRSZ, m
vmul VR4, VRS, VRS2, m
vfadd VR4, VRS1, VRS2, m
vimul VR, VRS1, VRS2, m

Add/Multiply values in VRS;, VRS, and writes to VR,

. . . vmadd VR g, VRS, VRS2, VRS3, m
Arithmetic Instructions vfmadd VRy, VRS, VRSy, VRS3, m

Multiply values in VRS1,VRS; and add VRS3, and writes to VR,

vmax VRg, VRS1, VRS2, m
vmin VR;, VRS1, VRS2, m
vfmax VR4, VRS1, VRS, m
vimin VRy, VRS, VRS2, m

Element-wise maximum/minimum of values in VRS, VRS,
and writes to VR

vsplat VR4, VRS1, RS2, m
vbcastx VR, RSy
vbcastf VR4, FRS;

Splats the element in VR1[RS;] to VR,
Broadcasts value in RS1/FRS; to VR

Data Movement vredsum VR , VRS
vredmin VRy, VRS;
vredmax VR, VRS
viredsum VR, VRS,

Reduction of VRS; based on sum/max/min,
broadcast and store the result to VR,

V Rg: Vector destination registers
VRS, 3,3: Vector source registers,

m: Two bit encoding for masking; m=00 -> scalar shape destination, m=01 -> unmasked vector operation, m=10 -> mask enabled where v1.LSB=0, m=11 ->

mask enabled where v1.LSB=1; here v1 is the mask register.

setting the highest number of enabled vector registers in vregmax
CSR and the maximum width of elements in vemaxw CSR. The
vl CSR holds the current active vector length. Finally, we added
support in Spike for all the instructions in Table 1. Listing 2 is
an example of implementation vadd instruction in Spike. These
modification enabled simulation of the vector instructions. We
added functionality to Spike interactive debug mode to facilitate
tracing and debugging.

Listing 2: Implementation of vadd instruction in Spike.

require_extension('V');
require_rv64;

WRITE_VRD(v_add(VRS1, VRS2, EW, insn.m(), VMASK, VL));

2.3 RISC-V target for TensorFlow Lite

TensorFlow Lite is a lightweight deep learning framework for mo-
bile and embedded devices [1]. It compresses a TensorFlow model
to a .tflite model that has a small binary size. This enables on-device

machine learning and uses hardware acceleration to improve per-
formance. The TensorFlow Lite source code has two implemen-
tations; reference_ops and optimized_ops, for machine learn-
ing kernels such as convolution and depthwise-convolution. The
reference_ops implementation is portable, hardware-independent
and uses standard C/C++ libraries. The optimized_ops is a hard-
ware specific optimized implementation of kernel operations us-
ing gemmlowp, Eigen libraries [13, 18] and other processor spe-
cific optimizations. For example, in the case of ARM processors,
the optimized_ops implementation leverages gemmlowp, Eigen
libraries and Neon instructions [21] to optimize kernel operations.

To support RISC-V target for Tensorflow Lite, we modified some
functions to remove library dependencies not supported by Newlib !
[29] in reference_ops . This made the reference_ops implemen-
tation portable and capable of running on mobile and embedded
device with RISC-V processors. The C inline assembly functions
were used for constructing SIMD-aware optimized functions to be
used in optimized_ops implementation for RISC-V vector proces-
sors. Listing 3 shows the implementation of a function that performs

1C standard library implementation intended for use on embedded system
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Figure 2: Comparison of committed instructions, cycles and IPC for ARM-base, RV-base-v1 without loop optimization and RV-
base-v2 with loop optimization for four variants of MobileNet [14]. Here, Mobilenet-v1 (0.25, 128) means MobileNet-V1 model
for input size of 128x128 pixels and 0.25 depth multiplier. The depth multiplier changes the number of channels in each layer.

element-wise addition of two arrays. Using the instructions in Table
1, we can support a wide range of machine learning models.

We cross-compiled the TensorFlow Lite source code for RISC-V
ISA and executed .tflite models on Spike. With the infrastructure in
place, we generate a binary that can run on a RISC-V processor that
has micro-architectural support for the RISC-V V ISA extension.

Listing 3: A example function for element-wise addition of
two arrays.

void VectorVectorAdd(const float* inputl,
const float* input2,
floatx output, int len) {
int new_len = len - (len & (kMaxVectorLength32 - 1));
int len_diff = len & (kMaxVectorLength32 - 1);

SetConfig(kElementWidthMax32, kMaxVectorLength32);

for (int i = @; i < new_len; i += kMaxVectorLength32) {
__VectorLoad((inputl + i), (input2 + i));
__VectorAddFloat();
__VectorStore((output + i));}

if (len_diff !=0) {
SetV1l(len_diff);
__VectorLoad((inputl + new_len), (input2 + new_len));
__VectorAddFloat();
__VectorStore((output + new_len));}

3 Evaluation

In this section, we evaluate the code optimizations for RISC-V and
compare it with ARM processors, as ARM processors are the most
commonly used processors for mobile systems. For comparison
purpose we define the Region Of Interest (ROI) as the execution of
interpreter->Invoke() function in TensorFlow Lite. The deep learning

models [14-17, 25, 26] used in our evaluation are listed in Table
2. These are commonly used machine-learning inference models
that are deployed on mobile devices. We cover a wide range of
applications using these benchmark models. The models are 32-
bit floating point .tflite models and are hosted on TensorFlow Lite
website [2].

To evaluate the performance of deep learning models listed in Ta-
ble 2 for ARM processor, we used gem5 [9] in full system mode with
ARM A-class, 4-stage pipeline High Performance In-order (HPI)
core configuration [28]. The ARM HPI was configured with 16KB
L11$, 16KB L1 D$ and without L2$ 2. In this section, we will use
the term ARM-base for the baseline implementation of TensorFlow
Lite using reference_ops, and ARM-opt for the implementation of
TensorFlow Lite using optimized_ops. We inserted m5_reset_stats
and m5_dump_stats functions in TensorFlow Lite source code to
get gem5 performance stats for ROI. We used number of cycles and
committed instructions as our performance metrics for evaluation.

For RISC-V, RV-base and RV-opt represents the RISC-V cross-
compiled binaries of TensorFlow Lite using reference_ops and
optimized_ops, respectively. We mapped a in-order 5-stage pipeline
Rocket core [7] to Zedboard [10] to evaluate the performance of
benchmarks in Table 2 for RV-base. The Rocket core is configured
with 16KB L1 I$, 16KB L1 D$ and without L2$, as the current ver-
sion of Rocket chip does not support L2$. We used hardware per-
formance counters, specifically the cycle CSR and instret CSR
for evaluation. Currently, the microarchitecture enhancement to
Rocket-chip processor for supporting extended instructions in Ta-
ble 1 is in the ‘pre-pre-alpha stage’. For this paper we use Spike
to benchmark number of committed instructions of deep learning
benchmarks listed in Table 2 for RV-opt.

2We simulated ARM core without L2$ to perform a fair comparison with RISC-V
Rocket core
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Figure 3: Number of committed instructions for RV-base-v2, ARM-base, RV-opt-v1 optimized with 128bits registers, ARM-opt
and RV-opt-v2 optimized with 256bit registers for various deep learning models.

Table 2: List of deep learning models using in our evalua-
tion. CONV = Convolution layer, LSTM = Long Short Term
Memory.

Application Model Dominant layer

AutoML MnasNet variants CONV

Image Classification DenseNet, CONV
Inception_V3, CONV
ResNet_50, CONV
MobileNet variants, CONV

Object Detection Yolo_tiny CONV

Speech Recognition  Speech encoder/decoder LSTM

ARM-base and RV-base are cross-complied from the same source
code. Although in both cases, we used “-03” compiler flag, we no-
ticed that the number of committed instructions and corresponding
cycles in ROI were higher for RV-base as compared to ARM-base.
Figure 2 shows the number of committed instructions and num-
ber of cycles for four variants of MobileNet [14] model used in
image classification workload. Figure 2 show the number of com-
mitted instructions and cycles are ~2X higher for RV-base-v1 in
comparison to ARM-base. Here, RV-base-v1 corresponds to cross-
complied from TensorFlow Lite reference_ops. The difference in
instruction and cycle count is due to the difference in the com-
piler optimizations. As the ARM cross-compiler has matured over
the years, the compiler optimizes a nested loops in source code
such that the inner-most loop has few instructions. We updated
the source code to replicate the compiler loop optimizations. We
refer to this updated version as RV-base-v2. As shown in Figure 2a
and 2b, the loop optimization reduced the number of committed
instructions and cycles for RV-base-v2, and these numbers are now
comparable to that of ARM-base. For the rest of our analysis we will
use RV-base-v2 and ARM-base as our baseline implementations.

We next compare ARM-opt and RV-opt implementations using
the number of committed instructions for the deep learning model
listed in Table 2. ARM-opt implements ARM Neon extension [21].

ARM Neon extension has a fixed SIMD width of 128bits. The bench-
mark models use single precision floating point, therefore the pro-
cessor operates on 4 single floating precision values in one instruc-
tion. We set the RISC-V vector register width to be 128bits for a
fair comparison with ARM processor with Neon extension. Also,
we evaluated the setup for vector register width of 256bits. Figure
3 shows the comparison of ARM-base, RV-base-v2, ARM-opt and
RV-opt-v1 with 128bits register widths and RV-opt-v2 256bits regis-
ter widths using deep learning models in Table 2. As expected, the
number of committed instructions are similar (across all the models)
for ARM-base and RV-base-v2. On average, across all benchmarks
the number of committed instructions for RV-opt-v1 is 1.25X lower
than the ARM-opt. In deep learning models where ‘CONV” are the
dominant layers, RV-opt-v1 has consistently less instructions than
ARM-opt. In the case of models where LSTM layers are dominant,
ARM:-opt has consistently less instructions than RV-opt-v1. This is
because of difference in code optimization for ARM and RISC-V.
ARM-opt implementation uses block vector-matrix multiplication
for LSTM layers. The instruction count for RV-opt-v1 can be im-
proved by implementing block vector-matrix multiplication.

On average, we achieved a 8X reduction on number of commit-
ted instructions using RV-opt-v1 implementation in comparison
to RV-base. We see an additional ~2X reduction in the number of
committed instructions using RV-opt with 256bits register width.

4 Summary and Future Work

In this paper, we present the software infrastructure we developed
to support compilation and execution of machine learning models
used in TensorFlow Lite framework. We are able to support a large
range of machine learning applications using a subset of RISC-V
Vector instructions. On average, we are able to reduce the number
of committed instructions by 8X using RV-opt implementation in
comparison to the RISC-V reference implementation.

In our current software pipeline, we handle register naming
and register allocations. Moving forward we want the compiler to
handle this task. To enable the compiler to do this task, we need
to support the new instructions in GCC using intrinsics. The GCC
compiler has three stages, the front-end, middle-end and back-end
[24]. At a high level, the front-end generates a parse-tree from the
input program, the parse-tree is used by middle-end to generate a
generic-tree, and the back-end converts the generic-tree to assembly
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code. As part of the future work, we will modify the front-end to
include the specification of the intrinsics in GCC source code. We
will also modify the back-end of GCC to create machine description
of the new instructions and generate the assembly code.

We are developing in-pipeline microarchitectural support for a
subset of the vector instructions for machine learning accelerator.
Our microarchitecture will include dedicated vector registers, vec-
tor caches and support for multiple precision arithmetic and logical
operations. Additionally, we will explore sparsity-aware microar-
chitecture design for the in-pipeline accelerator. As we develop the
in-pipeline accelerator we will modify the subset of instructions in
Table 1 as needed and update the software tool-chain accordingly.
We will evaluate our design in terms of performance, power and
area. We will open source our software modifications to TF Lite, as
well as the micro-architecture design to the wider community in
due course.
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