
Using FireSim to Enable Agile End-to-End RISC-V Computer
Architecture Research

Sagar Karandikar, David Biancolin, Alon Amid, Nathan Pemberton, Albert Ou, Randy Katz,
Borivoje Nikolic, Jonathan Bachrach, Krste Asanovic

{sagark,biancolin,alonamid,nathanp,aou,randykatz,bora,jrb,krste}@eecs.berkeley.edu
University of California, Berkeley

ABSTRACT
The explosive growth in the RISC-V ecosystem has brought about
a multitude of open RTL SoC implementations, as well as broad
software compatibility, presenting the opportunity to perform com-
puter architecture research with direct impact using real imple-
mentations. However, putting these together in a research context
with small, agile teams of developers has been challenging due to
difficulty maintaining hardware compatibility with complicated
software stacks, slow software RTL simulators, and poor introspec-
tion, productivity, and modeling-accuracy with FPGA prototyping.

While our prior work described FireSim’s capabilities as an FPGA-
accelerated cycle-exact datacenter simulation platform, in this pa-
per, we delve into the internals of FireSim and walk through a case
study simulating a novel hardware accelerator (Hwacha) that shows
how a researcher would use FireSim as a tool for rapidly and cycle-
exactly modeling their own systems that build on a single-node
RISC-V SoC. We discuss how FireSim addresses the challenges of
building a reliable, reproducible, and productive RISC-V research
environment, including packaging standardized releases of com-
patible RISC-V software and hardware, automating the process of
running cycle-exact simulations on cloud FPGAs that are orders
of magnitude faster than any software simulator, and providing
debugging tools that allow introspection capabilities not available
in FPGA prototypes.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation;
Modeling and simulation; •Computer systems organization;

KEYWORDS
FPGA Simulation, Agile Hardware, Open-source Hardware, Perfor-
mance Evaluation

ACM Reference Format:
Sagar Karandikar, David Biancolin, Alon Amid, Nathan Pemberton, Albert
Ou, Randy Katz, Borivoje Nikolic, Jonathan Bachrach, Krste Asanovic. 2019.
Using FireSim to Enable Agile End-to-End RISC-V Computer Architecture
Research. In CARRV ’19: Third Workshop on Computer Architecture Research
with RISC-V, June 22, 2019, Phoenix, AZ. ACM, New York, NY, USA, 6 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CARRV ’19, June 22, 2019, Phoenix, AZ
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1 INTRODUCTION
Driven by RISC-V, great strides have been made recently in the
open-hardware community, with many new processor and acceler-
ator designs, including some silicon and industry proven designs.
However, translating open-hardware into tools for computer ar-
chitecture research can be challenging. Integrating open-hardware
and software components with a small agile team of researchers
can be time consuming and difficult to maintain, in addition to
being difficult to simulate. In particular, when using open-hardware
platforms, a simulation gap exists—researchers have traditionally
been left with slow software simulation or fast but inaccurate and
complex FPGA prototyping. While commercial emulation tools
exist, they are far too expensive to use in academia.

While previous work has covered the FireSim FPGA-accelerated
hardware simulation platform in the context of thousand-node net-
worked datacenter simulations [9], in this work we walk through
using the FireSim flow to enable practical computer architecture
research with real open-implementations running full software
stacks at a variety of scales. To demonstrate what is possible with
FireSim, we show how a researcher developing a hardware acceler-
ator (e.g. Hwacha [11]) can use FireSim to simplify their research
from early block-level development to running large benchmark
suites on parallel FPGA simulations of the full SoC.

1.1 Why Not FPGA Prototyping?
In many cases, mapping an RTL design to an FPGA is not the
end goal—instead, FPGAs are commonly used as a prototyping
platform to enable running large software workloads on hardware
designs before they are taped-out. However, FPGA-prototyping
comes with several challenges. Often the prototype RTL must be
substantially modified from that which will ultimately be taped-out.
Directly attaching the I/Os of a design to FPGA I/Os, as is common
with FPGA prototypes, also results in inaccurate I/O timing. Lastly,
constructing an FPGA prototype also requires significant manual
effort and the resulting prototype usually has poor introspection
capabilities once deployed on the FPGA.

Modeling I/O in an FPGA prototype is difficult to do accurately
and deterministically. Consider an SoC that will eventually be taped
out at 1 GHz, that includes a DRAMmemory systemwith an average
memory access time of 100ns. If this system is directly prototyped
on an FPGA, the design will run at a lower frequency, e.g. 100 MHz.
However, the DRAM of the SoCmust be modeled using the physical
DRAM attached to the FPGA, which presents the aforementioned
“real world” latency of 100ns. If wemeasure performance of software
running on the SoC design in these two cases, memory accesses
will be 10 times faster on the FPGA prototype than on the taped out
system. In the least harmful case, this simply results in incorrect



CARRV ’19, June 22, 2019, Phoenix, AZ Karandikar and Biancolin, et al.

system performance measurements. In the worst case, this canmask
timing bugs in the FPGA-prototype version of the SoC that instead
are caught in silicon—leading to a costly respin. Similar arguments
can be made for other peripherals, like disks, networks, and UARTs.

Without introducing significant complexity, FPGA prototypes
also limit designs to interfacing with the I/O interfaces available
on a particular FPGA—if a user wants to model an SoC with an
Ethernet NIC on an FPGA without Ethernet support, then they
must manually develop some form of shim or purchase a new FPGA.
Evenwhen the correct I/Os are available, significant manual effort is
required to connect the user’s design with the FPGAmanufacturer’s
IP that actually connects to the needed I/O.

FPGA-prototypes also generally suffer from poor introspection
into a running design. Introspecting on an FPGA design is generally
achieved using in-fabric debuggers like Vivado’s Integrated Logic
Analyzers, or ILAs, which can provide waveforms for a small selec-
tion of signals for a small number of cycles (e.g. 1000s of cycles).
In addition to consuming non-trivial FPGA resources, since these
debuggers provide poor visibility, choosing the right signals to tap
is difficult: the designer is often forced to reselect and recompile
the FPGA bitstream multiple times as they gradually identify the
root cause.

FPGA-accelerated simulators address these issues, by exploit-
ing host-target decoupling: they decouple clock ticks visible to the
simulated system from the host clock of the FPGA. In doing so,
they allow custom models to be attached to the design, which
present accurate timing on all I/O interfaces. When new I/O pe-
ripherals are designed, the user does not need to purchase a new
FPGA—they can simply write a new I/O model, which speaks to a
standard simulation transport and is automatically shimmed out
to simulation management software on the host machine attached
to the FPGA, for further modeling. Because these models speak
to standard interfaces exposed by the simulator environment (e.g.
MMIO or a high-throughput queue interface in FireSim’s case) they
are easy to develop and test in software simulation, avoiding the
commonly difficult to debug interfacing issues that show up with
FPGA prototypes. Having this clean abstraction layer also simpli-
fies porting to new FPGA platforms—the simulator environment
itself is ported, rather than painstakingly porting each user design.
This porting effort can be shared between all users of the FPGA
platform. FPGA-simulation environments also add significant intro-
spection capabilities that make debugging and evaluating a design
considerably easier. We will discuss these in detail in Section 4.5.

These differences demonstrate that most architects don’t really
want FPGA prototypes—rather, FPGA-prototypes are a stopgap for
the lack of a productive and open FPGA-accelerated cycle-exact
simulation platform for their RTL designs.

1.2 Why use cloud FPGAs?
Cloud FPGAs provide significant benefits to the architecture re-
search community as a platform for enabling agile design evalua-
tion. Just like the general-purpose cloud, the FPGA cloud provides
benefits in terms of elasticity, capital expenditure reduction, and
ease-of-use [4].

The use of cloud FPGAs allows FPGA-simulation environments
to be elastic. When a user needs to run several benchmarks in par-
allel in a short time period, e.g. before a paper or tape-out deadline,
they can quickly scale to hundreds or thousands of FPGAs in the
cloud for a short period of time. As we will see in later sections, the
FireSim platform drastically simplifies the process of running large
parallel FPGA simulations, for example running all ten benchmarks
in SPECint17 Rate in parallel on ten FPGAs.

Using a cloud FPGA platform also reduces capital expenditure—
many organizations cannot afford to purchase of 100s of large
FPGAs (which cost thousands of dollars each). Affordability aside,
purchasing a large FPGA farm is often cost ineffective as they are
poorly utilized (the farm is completely utilized only near deadlines),
must be constantly administered (faulty boards must be replaced,
toolchains must be updated), and eventually become obsolete. All
of these problems are resolved with cloud-hosted FPGAs, as they
are essentially provided as a service, with the entire purchase and
management lifecycle handled by the cloud provider. The user can
simply request that some number of FPGAs are made available to
them, and they appear as a resource on the cloud machines.

Because of these benefits, FireSim focuses on cloud platform
support. However, when a user is in the initial stages of deploying
FireSim for their design, or runs the same jobs constantly (e.g. for
regression testing) maintaining a handful of local FPGAs is cost-
effective. We plan to add support for local FPGAs to FireSim in the
near future.

1.3 FireSim
FireSim [2, 9] is an easy-to-use, open-source, FPGA-accelerated,
cycle-exact hardware simulation platform that runs on cloud FPGAs.
FireSim automatically transforms and instruments open-hardware
designs (e.g. RISC-V Rocket Chip [5], BOOM [7], and accelerators at-
tached to RISC-V SoCs, such as Hwacha [11] and the NVDLA [1, 8])
with the MIDAS framework into fast (10s-100s MHz), determin-
istic, FPGA-based simulators that enable productive pre-silicon
verification and performance validation.

Tomodel I/O, FireSim includes synthesizeable and timing-accurate
models for standard interfaces like DRAM [6], Ethernet, UART, and
others. By providing a framework to automatically manage cloud
FPGA infrastructure, FireSim lets hardware developers run large
parallel workloads on their new hardware designs and lets soft-
ware developers get a head-start on building software for a novel
hardware design, all running on the same infrastructure. In effect,
both hardware and software developers work from a single source
of truth: the RTL for the hardware design.

Originally developed to simulate new datacenter architectures [9],
FireSim is capable of scaling to simulating thousands of multi-core
compute nodes, with an optional cycle-accurate network simula-
tion tying them together. Leveraging AWS EC2 F1, FireSim removes
the high capex traditionally involved in large-scale FPGA-based
simulation, democratizing access to realistic pre-silicon hardware
modeling of new designs. For designs that contain RISC-V SoCs,
FireSim also provides compatible Linux distributions (Buildroot,
Fedora) and automates the process of building complex workloads
on top of these Linux distributions and deploying these workloads
to hundreds of FPGAs in parallel. By harnessing a standardized



Agile Architecture Research with the FireSim FPGA-Accelerated HW Simulation Platform CARRV ’19, June 22, 2019, Phoenix, AZ

Figure 1: FireSim Host Environment

host platform and providing a large amount of automation/tooling,
FireSim drastically simplifies the process of building and deploying
large-scale FPGA-based hardware simulations.

2 USING FIRESIM AS PART OF THE AGILE
ARCHITECTURE RESEARCH FLOW

Below, we show how FireSim integrates into the agile hardware de-
sign stack.We estimate that most computer architecture researchers
are interested primarily in evaluating the performance, area, and
power of their designs, in that order. FireSim plays a key role in
this stack, because it drastically improves on the state of the art
for obtaining performance results for novel hardware designs. We
consider steps 1 and 7 below to be out of the scope of this paper,
but describe some high-level integrations with the tapeout flow at
the end of this paper.

(1) Iterate on high-level architectural tradeoffs with a high-level
simulator. This is outside the scope of this paper.

(2) Start developing RTL for your design, debug small-scale bugs
with software RTL simulation.

(3) Integrate your design into FireSim to simulate your design
automatically on cloud FPGAs.

(4) Use FireMarshal to build reproducible RISC-V-based software
stacks for your hardware design.

(5) Use FireSim’s debugging features to debug your design at
FPGA-speeds.

(6) Integrate with Hammer to get area numbers.
(7) Iterate on physical design/tape-out your design. This is out-

side the scope of this paper.
In the remainder of this paper, we focus on how a user can use

FireSim to enable agile development and evaluation of a custom
accelerator attached to Rocket Chip over the RoCC interface, by
walking through this flow.

3 FIRESIM BASICS
Before we walk through using FireSim to simulate a novel accel-
erator design, let us clarify some FireSim environment-specific
terms. Figure 1 describes what FireSim infrastructure looks like at
a high-level on a cloud platform.

• FireSim Manager (firesim). This program automates the
work required to launch FPGA builds and run simulations.
Most users will only have to interact with the manager most
of the time. This program is similar to the vagrant and
docker tools, but for FPGA simulators instead of VMs/con-
tainers.

• Manager Instance. This is the AWS EC2 instance that users
SSH-into and do work on. The FireSim Manager running
on this instance will deploy builds/simulations to other EC2
nodes.

• Build Farm. These are instances that are automatically start-
ed/terminated by the FireSim manager when you run FPGA
builds. The manager will automatically ship source for builds
to these instances and run the Verilog to FPGA Image process
on them, then copy back build results.

• Run Farm. These are a tagged collection of F1 (and M4)
instances that the manager automatically launches and de-
ploys simulations onto. You can launch multiple Run Farms
in parallel, each with their own tag, to run multiple separate
simulations in parallel.

To disambiguate between the hardware designs being simulated
and the machines doing the simulating, we also define:

• Target. The design and environment under simulation. Gen-
erally, a group of one or more multi-core RISC-V micropro-
cessors with or without a network between them.

• Host. The computers executing the FireSim simulation—the
Run Farm from above.

We frequently prefix words with these terms. For example, soft-
ware can run on the simulated RISC-V system (target-software) or
on a host x86 machine (host-software).

4 USING FIRESIM TO SIMULATE A CUSTOM
ACCELERATOR

As a concrete example of the FireSim flow, we describe how to
integrate and simulate a novel hardware accelerator design into
FireSim. For this paper, we use the Hwacha vector accelerator [11].

4.1 Initial RTL development and simulation
Initial RTL development works much in the same way as any other
system. The developer first chooses a target platform. An example
target platform is FireChip, which is the default target in FireSim.
FireChip is built on the open-source Rocket Chip generator [5] and
integrates various other peripherals, including an Ethernet NIC, a
block device controller, a UART (from SiFive’s sifive-blocks [3]),
and other peripherals. FireChip also supports replacing the in-order
Rocket cores included with Rocket Chip with Berkeley Out-of-
Order Machine (BOOM) cores [7]. As a Rocket Chip-based system,
FireChip can include RoCC accelerators. At this stage in the process
of developing and integrating a custom accelerator like Hwacha,
the user can use the FireChip environment to run small benchmarks
on their system in software RTL simulation, using proprietary en-
vironments or open tools like Verilator [12]. To distinguish from
other forms of software simulation we will discuss in the follow-
ing section, we call this target-level software simulation. Once a



CARRV ’19, June 22, 2019, Phoenix, AZ Karandikar and Biancolin, et al.

developer is satisfied with their design running their specified mi-
crobenchmarks, they can move on to integration into FireSim.

4.2 Integrating a design into FireSim and
building FPGA images

Once a user has faith in the basic functionality of their RTL, they
can rapidly build a variety of configurations within the FireSim
environment. To target their design in FireSim, users can simply
drop-in their fork of FireChip and choose the appropriate top-level
design to build with three parameter settings given to the manager:

• DESIGN
• TARGET_CONFIG
• PLATFORM_CONFIG

Before running an FPGA-build, FireSim provides two additional
levels of software-simulation to allow users to sanity-check that
their design has been properly integrated into the FireSim environ-
ment: MIDAS-level software simulation and FPGA-level software
simulation.

Generally, MIDAS-level software simulation is the only form
of software-simulation that will be utilized by users. This level of
software-simulation acts as a sort of integration test of the design
into the FireSim environment. This takes the design and wraps
it in the FPGA-simulation infrastructure, and then runs the same
microbenchmarks that the user was previously running in target-
level software simulation. This ensures that common mistakes like
incorrect I/O model selection are discovered before going through
time consuming FPGA-builds.

FPGA-level software simulation is primarily targeted at FireSim
developers. This level of software simulation is primarily useful
when porting to new FPGA platforms, or when incorporating pre-
viously unused features of an existing FPGA platform. This relies
on the FPGA vendor’s simulation environment (e.g. Xilinx’s XSim,
provided with Vivado), to faithfully model all of the I/Os exposed
by the FPGA platform. This level of simulation is generally the
slowest, but is unnecessary for users who are not changing the
simulation environment’s interfaces with the FPGA host.

Once the user is satisfied that their design has been properly
incorporated into the FireSim environment, they can rapidly run
many parallel FPGA-bitstream builds. While FireSim does not im-
prove on FPGA-bitstream build time, it does include significant
automation to take advantage of parallelism in the cloud. For each
DESIGN, TARGET_CONFIG, and PLATFORM_CONFIG triplet that a user
requests to be built, FireSim can spin up a Vivado build instance on
EC2 for that configuration. Thus, an essentially unlimited number
of FPGA bitstream builds can run in-parallel. One the bitstream
process is completed, the FireSim manager emails the user with the
bitstream’s identifier for each configuration, which we will use later
to deploy simulations. For example, if we consider a design space
where the user has two DESIGNs (e.g. two different kinds of acceler-
ator pipeline), two TARGET_CONFIGs (e.g. 10 vs. 20 functional units
with the design), and two different memory systems to experiment
with, represented in the PLATFORM_CONFIG (e.g. DDR3 vs. DDR3 +
LLC), the FireSim manager can automatically build all eight of these
configurations at once, in-parallel, on eight build instances. Since
the cost of builds is measured in machine-hours on AWS, running
these builds in parallel costs no more than running them serially.

Local Development

EC2 F1

fedora.json

rdma.json

QEMU

Serve
rbin

rootfs

build

launch

launch

install

test
Reference

Outputs

FireSim

Spike

Client
bin

rootfs

Figure 2: FireMarshal flow. Configuration files are built into
a boot binary and rootfs for each job in the workload. The
jobs can then be launched in either functional simulation
with FireMarshal or cycle-exact simulationwith the FireSim
manager.

4.3 Using FireMarshal to build reproducible
RISC-V based software stacks

An agile hardware design flow requires testing and benchmarking
with real software workloads. For example, a project may want a
bare-metal unit testing workload utilizing the RISC-V proxy kernel,
performance regressions using a Buildroot-based Linux distribution,
and end-to-end distributed benchmarks using Fedora. These varied
and complex software stacks need to be built consistently and repro-
ducibly by different developers, be compatible between functional
and cycle-exact simulation, and limit complexity to project-specific
features. In FireSim, workloads are managed by a tool called Fire-
Marshal. Under FireMarshal, workloads can be tracked in a version-
controlled repository and reproduced as-needed. Configuration
files typically specify a workload to base off of, and any workload-
specific changes that must be made to that base. FireMarshal comes
with several standard software distributions that are configured to
work in the RISC-V SoCs that FireSim supports and receive regu-
lar updates (bare-metal, Buildroot, and Fedora). Complex projects
may create hierarchical workloads, where common options are
defined once and inherited by many workloads (e.g. unit tests and
benchmarks likely share startup code). Once the workload is speci-
fied, FireMarshal can be used to automatically build, launch, and
test the workload in functional simulation. When the workload is
ready, the install command links the workload into FireSim for
cycle-exact simulation. Figure 2 shows a typical usage pattern.

4.3.1 Hwacha End-to-End Testing Workload. The software develop-
ment process for a custom accelerator like Hwacha begins with a
modified Spike functional simulator that acts as a golden model for
RTL development, and a high-performance platform for software
development. We then define a number of specialized workloads in-
cluding unit tests, end-to-end regression tests, and complete bench-
marks. Listing 1 shows the FireMarshal configuration for an end-
to-end testing workload. This workload uses the standard Fedora
distribution as a base, then adds a custom Linux kernel (Hwacha
changes the context-switch code in Linux), an overlay containing
benchmark sources, and a bootstrap script that natively compiles
benchmarks and downloads any required packages (guest-init
scripts run exactly once natively on the workload in QEMU during
building). We also specify a run script that executes the benchmark



Agile Architecture Research with the FireSim FPGA-Accelerated HW Simulation Platform CARRV ’19, June 22, 2019, Phoenix, AZ

every time the workload is launched. Finally, the workload config-
uration includes a testing reference directory that FireMarshal will
use to verify the results of the runTest.sh script.

1 {

2 "base" : "fedora",

3 "run" : "runTest.sh",

4 "linux -src" : "hwacha -linux/",

5 "overlay" : "hwacha -overlay",

6 "guest -init" : "bootstrap.sh",

7 "spike" : "hwacha -spike/",

8 "testing" : { "refdir" : "e2eRes /"}

9 }

Listing 1: Example benchmark workload configuration.
This workload inherits the standard Fedora configuration,
adds a custom Linux kernel, file-system overlay, a script
to download packages and natively compile benchmarks,
and a modified Spike functional model. When launched,
this configuration runs the “runTest.sh” benchmark and
compares its output to the “e2eRes/” folder (if launched via
the test command).

4.4 Running simulations with an accelerator
design in FireSim on cloud FPGAs

Once the hardware and software components have been built, the
next step is to deploy simulations on FPGAs. By modifying a few
configuration files, users can control the entire FireSim simulation
environment, including the design under simulation and the host
platform. The hardware design being simulated is set in these con-
figuration files and heterogeneous configurations are also possible.
The hardware configuration can also add a cycle-accurate network
simulation between simulated nodes, provided that the target de-
sign includes a network interface. On the software side, a workload
can be similarly selected—the user can choose any relevant work-
load that has been defined using FireMarshal. Combining these
components, the FireSim manager can be easily configured to run
both large-scale networked simulations, as well as many parallel
single-node benchmarks. For example, the spec17-intrate.json
workload included in the open version of FireSim runs all ten bench-
marks included in the SPECint17 Rate benchmark suite in parallel
on 10 FPGAs. Once the configuration files are appropriately set,
only three commands are required to run an FPGA simulation, with
no other intervention by the user:

(1) $ firesim launchrunfarm: This launches the Run Farm
instances automatically, based on user-supplied counts of the
types of instances needed. In the case of running SPEC, this
will automatically launch 10 f1.2xlarge instances, which
each have one FPGA, so that we can run the ten benchmarks
in parallel.

(2) $ firesim infrasetup: This automatically builds all re-
quired software components to run a workload on a par-
ticular hardware configuration and copies all necessary in-
frastructure to each of the F1 (FPGA) instances previously
launched.

(3) $ firesim runworkload: This starts the actual FPGA simu-
lations and presents a monitoring interface that shows where
each simulation is running. It will also automatically copy
back results of completed simulations to the manager in-
stance for analysis by the user. With a setting specified in
an ini file, this can also automatically terminate instances
as soon as simulations are computed, for maximum cost
efficiency.

4.5 Using FireSim’s debugging features to
debug a design at FPGA speeds

A common argument against FPGA prototyping is the low vis-
ibility into the simulation as compared with software-based RTL
simulation or architectural simulation. In the case that we encounter
a situation in which a simulation hangs or produces an incorrect
result, FireSim offers several debugging features to help users un-
derstand what is happening in their hardware design when running
on an FPGA. These include assertion and printf synthesis [10],
automatic integrated logic analyzers (ILA) insertion, and processor
commit trace logging.

Assertion and printf synthesis were originally introduced in
DESSERT [10] and are now available in open-source FireSim. When
assertion synthesis is enabled, assertion statements present in the
target source RTL, which would traditionally be ignored by an
FPGA flow, are wired up to a custom FireSim widget. This widget
tracks the firing of assertions within the target design and reports
assertions that trigger when running on the FPGA. Designs like
Rocket Chip and BOOM by default contain hundreds of assertions
in their source RTL, and including assertions in new custom de-
signs is a standard practice. Synthesis of printfs is another useful
debugging tool. While traditional FPGA flows ignore printfs in
RTL, printf synthesis allows wiring up printfs to a widget on
the FPGA which transports the information in the printf to the
host machine, where it is then printed as if the user were running a
software RTL simulation. This greatly simplifies the process of ex-
tracting information that lives deep within a design for FPGA-speed
debugging.

Automatic ILA insertion is another debugging feature available
in FireSim. This feature, called AutoILA, assists in bridging the gap
between high-level generator descriptions written in Chisel and
the ILA infrastructure available from commercial FPGA vendors.
FireSim’s AutoILA support allows users to apply a Chisel annotation
to a signal in a design, which is then automatically wired out to the
top of the design by a FIRRTL transformation. From there, Xilinx
ILA resources are automatically generated, added, and wired into
the simulator RTL, and then built as part of the regular FPGA-
image build-flow. At runtime, users can then attach the standard
Vivado GUI ILA interface from their manager instance to the F1
instance running the simulator to be debugged and use standard
ILA features, like trigger-based recording. Altogether, ILAs enable
waveform debugging in an environment similar to software RTL-
simulation.

An additional debugging feature currently available in FireSim is
processor commit trace logging. FireSim includes a hardwarewidget
that attaches to the committed instruction trace port available on



CARRV ’19, June 22, 2019, Phoenix, AZ Karandikar and Biancolin, et al.

Rocket Chip and BOOM to capture information about the software
executing on a simulated RISC-V design and log it to disk on the
host machine. These logs allow users to understand and analyze
the software their simulated SoC design is running, down to the
individual instruction.

With these debugging tools, FireSim provides drastically greater
design introspection capabilities at runtime compared to FPGA
prototypes, while enabling orders-of-magnitude better simulation
performance than fully observable software RTL simulators.

4.6 Measuring ASIC QoR with Hammer.
Of course, FireSim can only shed light on two of the three terms of
the Iron Law of processor performance—to measure cycle time (and
area and power) the designer must also push their design through
an ECAD flow targeting a specific process technology. To this end,
users can take the same design they simulated with FireSim (e.g.
their fork of FireChip) and, with little modification, pass it off to
Hammer, an open-source, agile, vendor-agnostic ECAD flow. While
users can use their own flow, we are working on providing much
tighter integration with Hammer in future FireSim releases, provid-
ing a highly streamlined, end-to-end process for evaluating novel
processor and accelerator designs.

5 CONCLUSION
FireSim [2, 9] is an easy-to-use, open-source, FPGA-accelerated,
cycle-exact hardware simulation platform that runs on cloud FPGAs.
FireSim automatically transforms and instruments open-hardware
designs (e.g. RISC-V Rocket Chip [5], BOOM [7], and accelerators at-
tached to RISC-V SoCs, such as Hwacha [11] and the NVDLA [1, 8])
with the MIDAS framework into fast (10s-100s MHz), deterministic,
FPGA-based simulators. FireSim can scale out simulations to arbi-
trarily many FPGAs in the public cloud, to enable productive design-
space exploration without the capex of building a large FPGA farm.
To manage the complexity of building and deploying simulations
using a variety of different target-software toolchains, operating
systems, and benchmark software, FireSim provides FireMarshal,
an automated workload-generation tool. To ease the traditional
challenges in debugging FPGA-based designs, FireSim provides
multiple introspection tools, including Auto-ILA generation, as-
sertion and printf synthesis, and trace log capture that give the
designer considerably more insight into their design than would be
possible with a conventional FPGA-prototype. Altogether, FireSim
provides an unparalleled set of features among open-source, FPGA-
based simulation frameworks with still more features yet to be
released—we strongly encourage you to check out FireSim for your
next RISC-V SoC project.

ACKNOWLEDGMENTS
Research partially funded by DARPA Award Number HR0011-
12-2-0016 and ARPA-E Award Number DE-AR0000849. Research
also partially funded by RISE Lab sponsor Amazon Web Services,
ADEPT Lab sponsor Intel, andADEPT Lab affiliates Google, Huawei,
Siemens, SK Hynix, and Seagate. Any opinions, findings, conclu-
sions, or recommendations in this article are solely those of the
authors and do not necessarily reflect the position or the policy of
the sponsors.

REFERENCES
[1] 2018. The NVIDIA Deep Learning Accelerator (NVDLA). http://nvdla.org/.
[2] 2019. FireSim: Easy-to-use, Scalable, FPGA-accelerated Cycle-accurate Hardware

Simulation in the Cloud. https://github.com/firesim/firesim.
[3] 2019. SiFive Blocks: Common RTL blocks used in SiFive’s projects. https://github.

com/sifive/sifive-blocks.
[4] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. 2009. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28. EECS Department, University
of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[6] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack Koenig, Andrew Water-
man, Jonathan Bachrach, and Krste Asanović. 2019. FASED: FPGA-Accelerated
Simulation and Evaluation of DRAM. In The 2019 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA’19) (FPGA ’19). ACM, New
York, NY, USA, 10. https://doi.org/10.1145/3289602.3293894

[7] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic, David A. Patterson, and Krste
Asanović. 2017. BOOM v2: an open-source out-of-order RISC-V core. Technical Re-
port UCB/EECS-2017-157. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html

[8] Farzad Farshchi, Qijing Huang, and Heechul Yun. 2019. Integrating NVIDIA Deep
Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. In In proccedings of
The 2nd Workshop on Energy Efficient Machine Learning and Cognitive Computing
for Embedded Applications, at HPCA 2019. http://arxiv.org/abs/1903.06495

[9] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2018. FireSim: FPGA-accelerated Cycle-exact Scale-out System
Simulation in the Public Cloud. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway, NJ, USA,
29–42. https://doi.org/10.1109/ISCA.2018.00014

[10] D. Kim, C. Celio, S. Karandikar, D. Biancolin, J. Bachrach, and K. Asanović.
2018. DESSERT: Debugging RTL Effectively with State Snapshotting for Error
Replays across Trillions of Cycles. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL). 76–764. https://doi.org/10.1109/FPL.
2018.00021

[11] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste Asanović.
2015. The Hwacha Vector-Fetch Architecture Manual, Version 3.8.1. Technical Re-
port UCB/EECS-2015-262. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-262.html

[12] Wilson Snyder. 2019. Introduction to Verilator. https://www.veripool.org/wiki/
verilator.

http://nvdla.org/
https://github.com/firesim/firesim
https://github.com/sifive/sifive-blocks
https://github.com/sifive/sifive-blocks
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/3289602.3293894
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-157.html
http://arxiv.org/abs/1903.06495
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/FPL.2018.00021
https://doi.org/10.1109/FPL.2018.00021
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-262.html
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

	Abstract
	1 Introduction
	1.1 Why Not FPGA Prototyping?
	1.2 Why use cloud FPGAs?
	1.3 FireSim

	2 Using FireSim as part of the Agile Architecture Research Flow
	3 FireSim Basics
	4 Using FireSim to simulate a custom accelerator
	4.1 Initial RTL development and simulation
	4.2 Integrating a design into FireSim and building FPGA images
	4.3 Using FireMarshal to build reproducible RISC-V based software stacks
	4.4 Running simulations with an accelerator design in FireSim on cloud FPGAs
	4.5 Using FireSim's debugging features to debug a design at FPGA speeds
	4.6 Measuring ASIC QoR with Hammer.

	5 Conclusion
	References

