
Replicating and Mitigating Spectre Attacks on a Open Source
RISC-V Microarchitecture

Abraham Gonzalez∗
abe.gonzalez@berkeley.edu

University of California, Berkeley

Ben Korpan∗
bkorpan@berkeley.edu

University of California, Berkeley

Jerry Zhao∗
jzh@berkeley.edu

University of California, Berkeley

Ed Younis∗
edyounis@berkeley.edu

University of California, Berkeley

Krste Asanović
krste@berkeley.edu

University of California, Berkeley

ABSTRACT
Recent revelations of new side-channel vulnerabilities in modern
processors has made hardware security a first-order concern in
processor design. We demonstrate how the Berkeley Out-of-Order
Machine (BOOM), a generic open-source out-of-order RISC-V pro-
cessor, is useful for studying the performance and security impli-
cations of microarchitectural mitigations for side-channel attacks.
Two results are presented. First we replicate several basic variants
of Spectre attacks which exploit the effects of speculative execution
in the L1 data cache. We then implement a preliminary hardware
mitigation for such attacks, demonstrate its effectiveness, and mea-
sure its impact on performance, and area. Compared to the baseline
processor, our mitigation displays a 2% IPC improvement, a 2.5%
area increase, and a 0.36% clock reduction in a 45nm process. To
our knowledge, our work is the first available demonstration on an
open-source RISC-V processor of speculative side-channel attacks
and a potential hardware mitigation. Our methodology demon-
strates the value of the open-source RISC-V hardware ecosystem
for secure hardware research.

CCS CONCEPTS
• Security and privacy→ Security in hardware.

KEYWORDS
security, RISC-V, out-of-order processor
ACM Reference Format:
Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and Krste Asanović.
2019. Replicating and Mitigating Spectre Attacks on a Open Source RISC-V
Microarchitecture. In Proceedings of Third Workshop on Computer Architec-
ture Research with RISC-V, June 22, 2019, Phoenix, AZ. ACM, New York, NY,
USA, 7 pages.

1 INTRODUCTION
In early 2018, the disclosure of the Spectre [10] and Meltdown [12]
attacks demonstrated a common class of security vulnerabilities in
modern general-purpose high-performance processors. Following
these revelations, a wide range of similar attacks have surfaced.
These attacks leverage processor behaviors including branch pre-
diction [11, 13], caching [9], floating-point units [18], virtual ad-
dressing [20, 22], and speculative execution [14] to leak information
∗These authors contributed equally to this paper.

CARRV ’19, June 22, 2019, Phoenix,AZ
.

across secure boundaries. Since these behaviors are necessary for
performance in a modern processor, attacks exploiting these behav-
iors motivate computer architects to develop microarchitectural
mitigations which preserve performance.

Existing research on mitigations has largely leveraged archi-
tectural simulation, instead of RTL implementation. Traditionally,
architectural simulation has been favored over RTL implementa-
tion for computer architecture research due to the relative ease
of modifying architectural simulators, and due to the sparsity of
open-source RTL for high-performance processors. However, since
architectural simulation generates only estimates on the power,
performance, and area implications of new proposals, it provides
only a partial evaluation of the trade-offs of a proposed hardware
mitigation.

Rising trends in computer architecture present new method-
ologies for highly-productive architecture research which would
enable hardware-security researchers to work at the RTL level. Up-
take of the RISC-V open ISA provides a well-supported hardware
and software ecosystem, with open-source tools and documenta-
tion. The trend towards agile hardware design and evaluation also
provides an ecosystem of debugging and implementation tools,
including Chisel [3], FireSim [7], and HAMMER [21]. This has en-
couraged the growth in quality of open-source hardware implemen-
tations of modern processors, including The Berkeley Out-of-Order
Machine [4], Rocket Chip [2], PULPino [19], and riscy-OOO [26].

In this paper, we show the value of RISC-V for hardware se-
curity research by demonstrating a methodology for developing,
implementing, and evaluating microarchitectural mitigations for
security vulnerabilities in an out-of-order superscalar processor.
Our study targets The Berkeley Out-of-Order Machine (BOOM),
an open source RISC-V implementation of an out-of-order pro-
cessor that exhibits many of the hardware features and execution
behaviors which enable speculative execution attacks.

We contribute the first demonstrated speculative execution at-
tacks on the open-source BOOM processor. These attacks provide
a framework for hardware security researchers to introspect on
the behaviors of a modern high-performance processor during
speculative execution. We also contribute a preliminary RTL miti-
gation for speculative execution attacks targeting the L1 data cache.
Our mitigation is similar in spirit to the InvisiSpec [23] and Safe-
Spec [8] proposals, which suggest the addition of buffers to protect
side-channels from speculative execution. Our evaluation of the
mitigation’s effect on performance and security demonstrates the



CARRV ’19, June 22, 2019, Phoenix,AZ Gonzalez, Korpan, Zhao et al.

Figure 1: Overview of BOOM Pipeline

usefulness of the open-source RISC-V ecosystem for hardware se-
curity research.

The remainder of this paper is structured as follows: In Section 2
we demonstrate how disclosed attacks can be replicated on an open-
source processor, specifically BOOM. In Section 3 we demonstrate
the process of implementing a simple mitigation for our replicated
attacks. In Section 4 we evaluate the performance and security
implications of our implemented mitigation. In Section 5 we discuss
future work and conclude in Section 6.

2 SPECULATIVE ATTACK REPLICATION
To our knowledge, we provide the first set of open-source imple-
mentations of speculative execution attacks on an open-source
RISC-V processor, in our case BOOM. As a generic implementation
of an out-of-order processor, BOOM provides all of the necessary
microarchitectural components for a speculative execution attack
to occur. Additionally, BOOM’s open source RTL provides full visi-
bility of microarchitectural behaviors during program execution.

2.1 Speculative Execution Attack Components
We now describe the microarchitectural components which enable
speculative execution attacks on modern processors, and show how
BOOM demonstrates these features.

2.1.1 Branch Predictor Unit. In a modern high-performance pro-
cessor, the branch predictor lets the processor execute instructions
past a unresolved branch, substantially improving performance.
Many recently disclosed speculative execution attacks exploit this
optimization by training the branch predictors to misdirect the PC
during execution of victim code.

BOOM’s branch predictor, as shown in Figure 1, is split into a sim-
ple two-cycle “next-line predictor” (NLP) and a complex four-cycle

“backing predictor”. The NLP contains the Branch Target Buffer
(BTB) where the PCs and targets of recent branches are cached.
The NLP also contains the Return Stack Buffer (RSB) which holds
a stack of targets from ret instructions. The “backing predictor”
is a TAGE [16] or GShare predictor [15, 25] which makes a more
accurate prediction based on a global history of branch activity.
We designed attacks targeting a GShare predictor since the current
GShare predictor implementation performs more reliably than the
TAGE predictor implementation.

2.1.2 Speculative Execution. In a modern high-performance pro-
cessor, the branch predictor instructs the fetch stages to provide a
predicted instruction stream to the execution backend. As a result,
mispredicted branches might invalidate previously executed in-
structions, marking them as misspeculated. Register renaming and
reorder structures enable recovery from these misspeculations to
maintain overall program correctness, while still allowing instruc-
tions to execute out-of-order. However, misspeculated instructions
may leave behind visible microarchitectural state in the processor,
forming side-channels from which attacks can extract information
about the results of misspeculated instructions.

BOOM follows the conventional design paradigm of modern
out-of-order processors, as seen in Figure 1. The reorder buffer,
renaming stages, and issue queues coordinate to enable speculative
execution while guaranteeing program correctness.

2.1.3 Caching. Inmodern processors, multi-level cache hierarchies
allow the processor to exploit locality in its memory accesses. These
cache hierarchies also present a side-channel for speculative execu-
tion attacks. To reduce noise, cache side-channel attacks generally
target a large last level cache.

Our configuration of BOOM has a two-level memory hierarchy,
with a non-blocking L1 data cache, and an outer memory set to the



Replicating and Mitigating Spectre Attacks on a Open Source RISC-V Microarchitecture CARRV ’19, June 22, 2019, Phoenix,AZ

latency of L2. While demonstrated attacks have generally exploited
the L2 or L3, we show that highly-precise attacks designed with full
knowledge of the microarchitecture can still target the L1. Demon-
strated attacks have also used lower-level cache misses to expand
their speculation window. Since our memory latency is bounded
by hit latency to L2, we approximate long-latency memory-bound
misspeculations using a fdiv dependency chain.

2.1.4 Cache Manipulation. Existing demonstrated attacks have
so far exclusively targeted the x86 and ARM ISAs, where cache
manipulation instructions allow the attacker to gain control over
cache contents [1, 6]. For example, x86 has clflush to flush a cache
line from every level of the cache hierarchy.

However, RISC-V does not have an equivalent instruction. There-
fore, we implement a similar L1 cache flush function, which flushes
the an entire cache set, instead of a specific line in the set. The L1
cache flush function evicts the entire set by accessing extra array
addresses corresponding to the set N * L1_WAY times, where N is
large enough to account for the random cache replacement policy.
We choose N = 4 in order to have a 99% probability of evicting
a specific cache line from L1. While this function does provide a
method for the attacker to control L1 cache state, it also degrades
the performance of all code on the machine due to extra cache
misses.

2.2 Replicated Attacks
Leveraging the characteristics listed in Section 2.1, we implement
both Spectre-v1 and v2, otherwise known as the Bounds Check
Bypass and Branch Target Injection attacks for BOOM1.

In the Bounds Check Bypass attack, an “attacker array” is first
flushed from the L1 cache using the custom cache flush function.
Then a bounds check conditional branch within the victim code is
trained to enter a code block that accesses secret information. Next,
an attack round gives a value to the victim that fails the bounds
check, but during speculation is used to retrieve the value from the
cache. This allows the “attacker array” to be scanned and timed to
determine the secret value based on the timing of cache hits. This
attack pattern is otherwise known as a FLUSH + RELOAD attack
[24].

In the Branch Target Injection attack, we instead exploit the
outcome of a jalr instruction that uses the BTB to predict its
destination. In this attack, the attacker trains a BTB entry for a
jalr in the victim code to point at a function that leaks a secret
value through speculation. Similar to the Bounds Check Bypass
attack, this attack follows a FLUSH + RELOAD pattern in which an
“attacker array” is initially flushed then can be scanned and timed
to extract leaked information.

3 SPECULATION BUFFER
The side-channel which underlies many Spectre variants, including
those we replicated, is the modification of data cache state during
speculative execution. This is due to a behavior common in modern
out-of-order processors, in which speculative load misses will still
bewritten into the tag and data arrays. The attack variants described
in Section 2.2, carefully measure the execution times of repeated
1The source code for these replicated attacks is available at https://github.com/
riscv-boom/boom-attacks.

loads allowing attacker code to inspect the state of the cache and
infer the destination addresses of misspeculated loads by the victim
code.

In our mitigation, we consider the tag and data arrays as part of
the architectural state of the machine, since their contents will af-
fect the architectural results of timing measurements performed by
attacker code. Similar to how architectural register state is managed
in the execution pipelines of out-of-order machines, a secure proces-
sor must only allow correctly speculated, committing instructions
to modify the cache state. We implement a small “L0 speculation
buffer” that holds refill data from speculating load misses, and
flushes the data when the load is resolved as misspeculated. This
prevents misspeculated loads from affecting the state of the cache,
while still allowing correctly speculated loads to broadcast their
data into the rest of the machine as soon as possible, maintaining
performance.

Figure 2: Overview of modified BOOM L1 data cache

3.1 Miss Status Holding Registers
We implement our buffer as part of the Miss Status Holding Reg-
isters (MSHRs) in BOOM’s L1 data cache. The MSHRs hold the
status of inflight memory requests made by the L1 cache to the
L2 memory bus. In the original data cache, L2 cache refills would
write the refill data into the tag and data arrays before waking up
the corresponding MSHRs to return the load data to the proces-
sor. To implement the speculation buffer, we modified cache refills
to instead write the refill data into per-MSHR cache line buffers,
depicted in Figure 2.

An old cache line is evicted and a new cache line is written into
the cache only after the load which allocated the MSHR entry has
committed. On misspeculation, the speculatively allocated MSHR
entry is flushed along with any load data that has been returned.
This prevents misspeculated loads from altering the state of the
cache.

We enable bypassing of refill data out of the buffer, before the
data is committed. Consequently, the service time for a cache miss

https://github.com/riscv-boom/boom-attacks
https://github.com/riscv-boom/boom-attacks


CARRV ’19, June 22, 2019, Phoenix,AZ Gonzalez, Korpan, Zhao et al.

is slightly reduced compared to the original behavior; data can be
forwarded out prior to the updating of the cache data and tags.
However, the total MSHR allocation time is longer than with the
original behavior.

Another subtlety of the MSHRs is the per-MSHR replay queues.
These queues hold consecutive (secondary) load misses to the same
cache line while the initial (primary) miss is being handled. Follow-
ing the acquisition of the requested cache line, our modified MSHRs
will eagerly empty the replay queues until a store miss reaches the
head. Since stores issued to the memory system are always non-
speculative, the cache line can be immediately committed at this
point.

A final subtlety is the MSHR eviction policy which prevents
deadlock conditions. Consider a branch which depends on a load
for resolution. This critical load, and many loads which follow the
branch, will miss to different cache lines. The loads following the
branch are then issued speculatively before the critical load, filling
the MSHR file. Once the miss data for each of these loads is returned
and buffered, the MSHRs will wait for their speculative status to
resolve. As a free MSHR entry is required to complete the critical
load which the branch depends on, this scenario would result in
deadlock. To solve this, we allow an MSHR to be evicted if still
marked as speculative after receiving its refill data and draining its
replay queue. If the branch proved to be speculated correctly, then
any following loads to the same cache line would miss, causing a
performance decrease.

3.2 Point of No Return
In the base implementation of the speculation buffer, entries in the
buffer are only deallocated when their corresponding instructions
are reached by the head of the reorder buffer (ROB). However, this
can result in heavy MSHR utilization, as many instructions may
reside between a waiting load and the commit head. However, we
observe that many of those instructions, while still inflight, can be
marked as guaranteed to commit.

This informs the concept of a “point-of-no-return” (PNR) in the
ROB, in addition to the commit head. While the commit head tracks
the next instruction which will update the committed architectural
state, the PNR tracks the oldest instruction which may cause mis-
speculated execution, such as a branch which has not yet executed.
We observe that refills can be committed to the cache as soon as
the PNR passes the instruction which triggered them, since the
PNR guarantees that this instruction will eventually commit. This
reduces pressure on MSHR resources and prevents backpressure
on incoming cache requests.

To reduce the performance impacts of our buffer, we imple-
mented a PNR in the ROB. Two versions were implemented. The
first “simple-PNR” will mark at most one ROB row per cycle as
“guaranteed to commit”. We also implemented a more complex
“fast-PNR” that can mark an arbitrary number of rows per cycle,
essentially “jumping over” groups of safe or completed instructions
to the oldest incomplete unsafe instruction. These are illustrated
in Figure 3, which depicts a ROB organized into 2 columns as in
our BOOM configuration. The position of the PNR pointer on the
subsequent cycle is shown for both the simple and fast versions.

Figure 3: Overview of PNR in ROB

Table 1: BOOM Processor Parameters

Parameter Value

L1 Sets 64
L1 Ways 8
L1 Linesize 64 bytes
MSHR File Entries 4

BTB Sets 512
BTB Banks 2
BTB Ways 4

GShare History Bits 23
GShare Counter Table Entries 4096

4 EVALUATIONS
4.1 BOOM Processor Parameters
The two attacks were replicated on the BOOM processor with the
parameters given in Table 1 and 2. Note that our configuration em-
ploys 4 MSHRs and thus contains a 4-entry "L0 speculation buffer".
We have used the “simple” version of the PNR for the results (Sec-
tion 3.2), as the fast version has not yet provided a measurable
performance increase. All attacks were measured using FireSim, an
open-source cycle-accurate, FPGA-accelerated multi-scale simula-
tion platform [7].

4.2 Replicating Speculative Attacks Results
Overall, the attacks chosen were replicated successfully on the
BOOM microarchitecture. Table 3 shows the results of the two
attacks in reading a single secret byte or overall speed in bytes
per second. These measurements take into account the clearing
of the tally array before each run, the multiple rounds of training
for the BPU, the single attack run on the victim, and the time to
measure out the secret from the attacker array. The cycle counts
are close to each other because the code shares a similar structure.
The differences stem from the setup of the fdiv manipulation and
additional arithmetic in the Branch Target Injection attack.



Replicating and Mitigating Spectre Attacks on a Open Source RISC-V Microarchitecture CARRV ’19, June 22, 2019, Phoenix,AZ

Table 2: Attack Parameters

Parameter Value

Cache Hit Threshold 50 cycles
Number of runs on same byte 10 rounds
Training rounds for BPU 6 training rounds
Cache flush hits on same set 4 * L1_WAYS
GShare Counter Table Entries 4096

Table 3: Speculative Attack Results

Cycles per Bytes per Second
Attack Secret Byte 100 MHz 3.2 GHz

Bounds Check Bypass 884485 113 B/s 3618 B/s
Branch Target Injection 876602 114 B/s 3650 B/s

4.3 Speculation Buffer Results
We evaluated our speculation buffer implementation using Dhrys-
tone, the replicated attacks, and three small microbenchmarks. Our
microbenchmarks stressed the MSHR blocking and eviction condi-
tions that slow down the machine while Dhrystone was chosen as
an initial general performance test. The speculation buffer shows
an expected small decrease in performance in the microbenchmark
tests while Dhrystone shows a small improvement all while provid-
ing a defense against the replicated attacks demonstrated. A table
of results is shown at Table 4.

4.3.1 Microbenchmark Results. The first microbenchmark named
“Non-speculative load misses to same sets” was used to test how
efficient non-speculative loads were when the MSHR was unable to
allocate entries for each new load. This microbenchmark is a series
of loads that had different tags but the same index, which would all
request one specific MSHR in BOOM’s data cache. When running
with our speculation buffer, the refill data must first fill the MSHR
buffer before the cache. This causes a small performance decrease
for each load miss. Since our benchmark has 16 loads, this results in
a performance decrease of around 16 loads * (CACHE_LINE_SZ
/ DATABUS_WIDTH) or 16 * (64B / 8B) = 128 cycles.

The second microbenchmark named “Non-speculative load miss-
es to different sets” is similar to the first except that each subsequent
load is accessing a different set in the cache. In the normal version
of BOOM, the MSHRs would fill up completely but then stall when
full until a prior MSHR entry would be freed (when a previous load
is completed). When using the speculation buffer, there is a higher
performance penalty because the data must fill the MSHR buffer
with the cache data before filling the cache. Thus, there is an extra
overhead of around 8 cycles for every 4 loads since the MSHR’s
are allocated waves of 4 and the fill latency to the MSHR buffer is
CACHE_LINE_SZ / DATABUS_WIDTH or 64B / 8B = 8 cycles.

The final microbenchmark named “MSHR evicted speculative
load miss” is used to test the impact when a load has to be evicted
from an MSHR due to a potential deadlock condition mentioned in
Section 3.1. This microbenchmark shows the increased latency of
a load to the evicted cache line following this scenario. The large

Table 4: Speculation Buffer Results

Version of BOOM
Benchmark normal w. spec. buffer % Diff.

Non-spec. LD misses 540 cycles 640 cycles -19%
to same sets

Non-spec. LD misses 264 cycles 297 cycles -11%
to diff. sets

MSHR evicted spec. 48 cycles 67 cycles -40%
LD miss

Dhrystone 2176 Dhrys./s 2216 Dhrys./s +2%

performance penalty associated with this scenario is not surprising,
since the evicted load needs to completely reissue through the
load-store unit.

4.3.2 Dhrystone Results. Enabling the speculation buffer granted
a 2% increase in Dhrystone performance, as described in Table 4.
There are several factors which may contribute to this small perfor-
mance improvement. The speculation buffer delays the eviction of
old cache lines until the refill is known to commit, allowing hits on
the old cache line in the intervening cycles. Additionally, the spec-
ulation buffer decreases the latency of missed loads: this is because
refill requests can be sent to the bus earlier, and the returned data
can be forwarded out of the buffer as soon as it is available, rather
than waiting for the update of cache metadata.

4.3.3 Synthesis Results. Trial synthesis of BOOM in TSMC 45nm
was performed with HAMMER, a framework for running synthesis
and place-and-route [21]. The addition of our 4-entry speculation
buffer resulted in a 2.5% increase in area and a 0.36% decrease in
clock frequency. These differences are largely attributable to the 4
512-bit register arrays used to buffer incoming cache lines within
the MSHR file.

5 FUTUREWORK
5.1 Attack Improvements
The replicated attacks are only a subset of speculative execution
attacks that out-of-order microarchitectures are susceptible to. In
future work, we plan on both improving the efficiency of our repli-
cated attacks and demonstrating more variants of these exploits.

A simple improvement based on the microarchitecture may be to
tweak the attack parameters to improve performance. This includes
the attack parameters listed in Table 2. Potentially, the number of
rounds on the same byte and training rounds can be reduced to im-
prove the speed of the attack. These can be adjusted in conjunction
with the cache flush hits on the same set. Even though the random
cache replacement policy may not clear all the ways of the set, the
number of rounds on the same byte might remove the false hits
when the specified line was not evicted.

5.2 Other Attacks and Configurations
BOOM is susceptible to a variety of other speculative style attacks.
One such example is the Return Stack Buffer (RSB) attack. In the



CARRV ’19, June 22, 2019, Phoenix,AZ Gonzalez, Korpan, Zhao et al.

future, we plan on fixing BOOM’s RSB so we can demonstrate this
exploit. Another improvement would be to train the attacks on dif-
ferent branch predictors. Specifically, we would like to evaluate the
efficiency of these attacks on a high-performance TAGE predictor.

5.3 Further Evaluations
We plan to perform a more thorough evaluation of the performance
and security implications of the speculation with more workloads,
specifically the SPEC2017 benchmark suite [17] and the EEMBC
CoreMark benchmark [5]. We plan to configure multiple design
points of the speculation buffer with multiple implementations of
the PNR head and refill/replay system, and compare the trade-offs
of each implementation for security and performance.

5.4 Mitigation Improvements
From our evaluation of the implemented speculation buffer, we have
identified several areas for future improvements to this mitigation
strategy.

5.4.1 Multi-level Cache Hierarchy. The current speculation buffer
addresses only a single level cache hierarchy. BOOM is currently
configured with an L1 data cache and a large all-encompassing L2.
In the future, it would be valuable to configure BOOM with a more
realistic cache hierarchy, including a large L2 and L3. The technique
described in this paper could be potentially extended to protect
lower-level caches from speculative execution.

5.4.2 MSHR File as a Side-Channel. Two key limitations affect
our current MSHR file implementation: MSHRs are not always
immediately deallocated after being killed by misspeculation, and
only a single miss may be be inflight to a particular cache set at
once. These limitations open up more side-channels through which
Spectre style attacks could extract information. For instance, when
these limitations are combined, the following attack surfaces: an
attacker could perform their malicious call on a victim function
repeatedly, following each call immediately with a single loadwhich
is known to miss, rather than an inspection of an entire attack
array. If one of these loads took longer than expected, the attacker
could deduce that a killed miss to the same set was being held by
the MSHR, waiting for a response from the data bus. From this,
the attacker infers part of the address used in the victim’s secret-
dependent load. This attack may be more difficult to perform than
the standard attack, as there is a limited time window in which the
MSHR will remain allocated after being killed. Additionally, this
attack would be far slower as the victim call and probing sequence
needs to be performed an average of (num_sets + 1)/2 times to read
out loд2(num_sets) bits.

6 CONCLUSION
We have replicated Spectre on BOOM, an open source RISC-V pro-
cessor, showing that it is useful as a baseline for hardware security
research. Additionally, a speculative buffer was demonstrated as a
basic mitigation for these cache side-channel based speculative at-
tacks. With security as a first order concern in processor design, this
work demonstrates how RISC-V and BOOM enables researchers to
productively study hardware security vulnerabilities and mitiga-
tions in modern processors.

REFERENCES
[1] ARM. 2015. Cache maintenance. ARM Cortex-A Series Programmer’s Guide

for ARMv8-A 1 (2015). infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
den0024a/BABJDBHI.html

[2] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 (2016).

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In DAC Design Automation Conference
2012. IEEE, 1212–1221.

[4] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The Berke-
ley Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable,
Parameterized RISC-V Processor.

[5] Embedded Microprocessor Benchmark Consortium. 2018. Coremark: An EEMBC
Benchmark. https://www.eembc.org/coremark/

[6] Intel. 2011. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3B: System programming Guide, Part 2 (2011).

[7] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. Firesim: FPGA-accelerated cycle-exact scale-out system simulation in
the public cloud. In Proceedings of the 45th Annual International Symposium on
Computer Architecture. IEEE Press, 29–42.

[8] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2018. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. arXiv preprint
arXiv:1806.05179 (2018).

[9] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas Devadas,
and Joel S. Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in
Speculative Execution Processors. 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2018), 974–987.

[10] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[11] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Re-
turn Stack Buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT
18). USENIX Association, Baltimore, MD. https://www.usenix.org/conference/
woot18/presentation/koruyeh

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. CoRR abs/1801.01207 (2018). arXiv:1801.01207 http://arxiv.org/
abs/1801.01207

[13] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2109–2122.

[14] Giorgi Maisuradze and Christian Rossow. 2018. Speculose: Analyzing the security
implications of speculative execution in CPUs. arXiv preprint arXiv:1801.04084
(2018).

[15] Scott McFarling. 1993. Combining branch predictors. Technical Report. Technical
Report TN-36, Digital Western Research Laboratory.

[16] André Seznec and Pierre Michaud. 2006. A case for (partially) TAgged GEometric
history length branch prediction. Journal of Instruction-level Parallelism - JILP 8
(01 2006).

[17] Standard Performance Evaluation Corporation (SPEC). 2017. SPEC CPU 2017.
https://www.spec.org/cpu2017/Docs/overview.html

[18] Julian Stecklina and Thomas Prescher. 2018. Lazyfp: Leaking fpu register state
using microarchitectural side-channels. arXiv preprint arXiv:1806.07480 (2018).

[19] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou,
Eric Flamand, Frank K Gurkaynak, and Luca Benini. 2016. PULPino: A small
single-core RISC-V SoC. In 3rd RISCV Workshop.

[20] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient out-of-order execution. In 27th {USENIX} Security Symposium ({USENIX}
Security 18). 991–1008.

[21] Edward Wang, Adam Izraelevitz, Colin Schmidt, Borivoje Nikolic, Elad Alon, and
Jonathan Bachrach. 2018. Hammer: Enabling Reusable Physical Design. (2018).

[22] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. Technical Report. Technical report.

[23] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy. In 2018 51st Annual IEEE/ACM International

infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABJDBHI.html
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0024a/BABJDBHI.html
https://www.eembc.org/coremark/
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://www.usenix.org/conference/woot18/presentation/koruyeh
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://www.spec.org/cpu2017/Docs/overview.html


Replicating and Mitigating Spectre Attacks on a Open Source RISC-V Microarchitecture CARRV ’19, June 22, 2019, Phoenix,AZ

Symposium on Microarchitecture (MICRO). 428–441. https://doi.org/10.1109/
MICRO.2018.00042

[24] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 719–732.

[25] Tse-Yu Yeh and Yale N. Patt. 1991. Two-level Adaptive Training Branch Prediction.
In Proceedings of the 24th Annual International Symposium on Microarchitecture

(MICRO 24). ACM, New York, NY, USA, 51–61. https://doi.org/10.1145/123465.
123475

[26] Sizhuo Zhang, Andrew Wright, Thomas Bourgeat, and Arvind Arvind. 2018.
Composable Building Blocks to Open up Processor Design. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 68–81.

https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1109/MICRO.2018.00042
https://doi.org/10.1145/123465.123475
https://doi.org/10.1145/123465.123475

	Abstract
	1 Introduction
	2 Speculative Attack Replication
	2.1 Speculative Execution Attack Components
	2.2 Replicated Attacks

	3 Speculation Buffer
	3.1 Miss Status Holding Registers
	3.2 Point of No Return

	4 Evaluations
	4.1 BOOM Processor Parameters
	4.2 Replicating Speculative Attacks Results
	4.3 Speculation Buffer Results

	5 Future Work
	5.1 Attack Improvements
	5.2 Other Attacks and Configurations
	5.3 Further Evaluations
	5.4 Mitigation Improvements

	6 Conclusion
	References

