
Finger Finder: A Low-Energy Peak Detection Accelerator for
Capacitive Touch Controllers

Kai Kristian Amundsen
Gaute Myklebust

kai.kristian.amundsen@mywo.no
gaute.myklebust@mywo.no

MyWo AS
Trondheim, Norway

Per Gunnar Kjeldsberg
Magnus Jahre
pgk@ntnu.no

magnus.jahre@ntnu.no
Norwegian University of Science and Technology

Trondheim, Norway

ABSTRACT
Capacitive touch screens are ubiquitous, and all such screens need a
touch screen controller to detect user input. In this paper, we evalu-
ate a number of software and hardware schemes for identifying the
location of user touches in such systems. We conduct our study in
the context of MyWo’s RISC-V-based touch controller, and focus on
identifying user touches — or finding the peaks in an image — with
minimal energy consumption. We find that the peak detection algo-
rithm is heavily memory-bound and has very limited computation.
Thus, the complexity of even a simple RISC-V processor is almost
entirely wasted, and we propose the Finger Finder peak detection
accelerator to remove this overhead. Although Finger Finder con-
sumes 7.6 times less energy than the most efficient software-based
scheme, it has a limited impact on the energy consumption of the
complete touch controller.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Touch screen controllers, Peak detection, Accelerators

ACM Reference Format:
Kai Kristian Amundsen, Gaute Myklebust, Per Gunnar Kjeldsberg, and Mag-
nus Jahre. 2019. Finger Finder: A Low-Energy Peak Detection Accelerator for
Capacitive Touch Controllers. In CARRV ’19: Third Workshop on Computer
Architecture Research with RISC-V .

1 INTRODUCTION
Capacitive touch screens have become ubiquitous, and 1.7 billion
screens were produced in 2016 [20]. The touch controller is respon-
sible for applying, sensing, and analyzing the signals required to
detect user input. Commonly, touch-enabled systems are put into
low-power modes when not in use, and the system resumes normal
operation on user input. The trend is towards systems blending
more and more into the environment which results in systems
where the touching the screen is the only way to wake them up.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CARRV ’19, June 22, 2019, Phoenix, AZ
© 2019 Copyright held by the owner/author(s).

Thus, the touch controller needs to be enabled when the rest of
the system sleeps — making touch controller energy consumption
a key contributor to the system’s energy consumption while idle.
Furthermore, touch controllers need to maintain high sample rates
(e.g., 100 Hz) to remain responsive, since responsiveness is critical
for the user experience [18]. The key result is that touch controllers
need to minimize their energy consumption to ensure that they do
not adversely affect battery life.

The basic operation of capacitive touch controllers are shown
in Figure 1. At a high level, controller processing consists of two
steps. In the Image Acquisition (IA) step, the capacitances are first
sensed. Then, noise is removed to produce an image with as good
signal-to-noise ratio as possible. The image is then passed on to
the Image Post-Processing (IPP) step where fingers (i.e., peaks) are
detected in the image. If no fingers are detected, the system sleeps
until the next time the screen is sampled. Conversely, a feature
extraction step is executed and a number of touches — and their
positions — are communicated to the application processor (see
Section 2 for more details).

Prior work has exclusively focused on the IA step (e.g., [4, 7,
10, 17, 19]). We assume a highly efficient IA component and focus
our efforts on reducing the energy consumption of the IPP step.
The critical part of IPP is peak detection since it must be executed
for every sample. Since no prior work has studied peak detection
in detail, we systematically study both software and hardware
solutions with the objective of minimizing the energy consumption
of the peak detection algorithm.

The peak detection algorithm examines all pixels of the image
to identify the (potential) location of the user’s fingers. For each
pixel, it first checks if the value is above a preset threshold (i.e.,
above the background noise). Then, it checks if the pixel value is
larger than all neighbors. If it is, the pixel is classified as a peak and
added to a list of peak pixels which is later passed on to the feature
extraction step (see Figure 1). In MyWo’s touch controller, the peak
detection algorithm is entirely implemented in software that runs
on a low-power RISC-V core. Although simple, we find that this
solution leaves considerable leeway for optimization. Unfortunately,
peak detection only accounts for approximately 2.5% of the touch
controller’s total energy consumption, but we opt to report this
intermediate result as it may be relevant in other use cases. In future
work, we intend to study the parts of the touch controller that have
a more significant impact on the total energy consumption.

Our key observation is that peak detection approaches are funda-
mentally constrained by the data dependencies of the peak detection

1



CARRV ’19, June 22, 2019, Phoenix, AZ Amundsen, et al.

Capacitive
Touch
Sensor

Noise
Reduction

Peak
Detection

Feature
Extraction

Application
Processor

CommunicationSensor
Data

Image

Image

Peaks
Features

Early exit when no touch detected
(Common case)

Image Acquisition (IA) Image Post-Processing (IPP)

Figure 1: The image processing steps of a typical capacitive touch controller.

algorithm. However, the algorithm lends itself to hardware accel-
eration, and we propose an accelerator — called Finger Finder (FF)
— for this purpose. FF simply reads each pixel of the image and
compares it to the noise threshold. If the value of a pixel p is above
the threshold, FF sequentially compares the value of p to the value
of its neighbors until it finds a pixel with a higher value (i.e., p is
not a peak) or it has compared p to all its neighbors (i.e., p is a peak).
If p is found to be a peak, FF writes its coordinates to a peak list
in an on-chip SRAM memory. FF reduces energy consumption by
7.6× compared to the best software algorithm, and uses only 9%
more energy than a theoretically derived lower-bound for energy
consumption. The root cause of FF’s high efficiency is the simplicity
of the peak detection algorithm — which means that the complexity
of even a simple processor is entirely unnecessary.
In summary, we make the following key contributions:

• We describe the processing pipeline of MyWo’s state-of-the-
art RISC-V-based capacitive touch controller.

• We thoroughly evaluate a number of software and hardware
peak detection approaches — including an oracle scheme
that provides a lower-bound for the energy consumption of
peak detection.

• We propose Finger Finder — a hardware accelerator that
reduces the energy consumption of the peak detection al-
gorithm by 7.6× compared to the best performing software
algorithm. Finger Finder uses only 9% more energy than the
theoretical oracle scheme.

2 THE MYWO TOUCH CONTROLLER
Figure 1 shows an overview of the processing steps of a typical
capacitive touch screen controller. As aforementioned, the process-
ing consists of two main steps: Image Acquisition (IA) and Image
Post-Processing (IPP). In this section, we discuss the key operations
performed in each of these steps. We focus on peak detection since
this component has so far not been studied in the literature.

The IA-step uses a system of touch screen drivers, amplifiers and
ADCs to acquire screen data in a digital form. The data is then post
processed by a series of filters and accumulators to reduce noise.
After a complete screen acquisition, the result is a two-dimensional
array representing the measured capacitance of the corresponding
nodes in the touch screen.

After the image is acquired, we enter the IPP phase and the image
is analyzed to find peaks. A peak is found if a node is surrounded
by nodes with a lower or equal value. A simple implementation of

Algorithm 1 Naive Peak Detection Algorithm
for Each line n in image do
for Each node m in image do
if image[n][m] >= image[n-1][m] and image[n][m] >= image[n+1][m] and

image[n][m] >= image[n][m-1] and image[n][m] >= image[n][m+1] and
image[n][m] >= image[n-1][m+1] and
image[n][m] >= image[n+1][m+1] and
image[n][m] >= image[n-1][m-1] and image[n][m] >= image[n+1][m+1]

then
Put image[n][m] in list of peaks

end if
end for

end for

Capacitive
Touch
Sensor

Analog 
backend/

DSP

Sensor data
memory

Finger finder
(Optional)

RISC-V 
processor
with RAM

DMA Communication
modules

Figure 2: Architecture of the MyWo Touch Controller.

the peak detection algorithm is shown in Algorithm 1. The feature
detection step uses both the peaks found and the image. A list of
previously detected toucheswill bematchedwith the peaks found to
track the touches on the screen. Finger or hand gestures will also be
detected and large touches — such as a full palm — will be classified
and discarded. After all features have been detected, the number of
touches, their positions, and other features are communicated to
the application processor. This is typically done using SPI or I2C.

In a typical touch screen scan, the IA is on for 2 ms within the
10 ms period (i.e., 100 Hz sample rate), and IA accounts for three
quarters of the total energy consumption. The IPP stage is on for
4 ms and consumes one quarter of the total energy. Within these
4 ms, IPP spends 0.2 ms doing peak detection. Thus, peak detection
accounts for approximately 2.5% of the total energy consumption.

The architecture of MyWo’s touch controller is outlined in Fig-
ure 2. The system consists of a 32-bit RISC-V general purpose CPU
with corresponding on-chip SRAM memories and a DMA unit. In
addition, the system includes a dedicated subsystem for acquiring
sensor data and for initial sensor data processing. After the sensor
data has been acquired and processed, it is stored in a sensor data
memory block. This is a single-ported on-chip SRAM with several
time-multiplexed interfaces. The sensor data is post-processed to

2



Finger Finder: A Low-Energy Peak Detection Accelerator for Capacitive Touch Controllers CARRV ’19, June 22, 2019, Phoenix, AZ

detect peaks and features. This post-processing is typically car-
ried out on the RISC-V core. However, the architecture also allows
for dedicated hardware accelerators — such as Finger Finder — to
operate on the sensor data.

3 IMPLEMENTING PEAK DETECTION
The peak detection algorithm outlined in Algorithm 1 can be im-
plemented in different ways. In this section, we describe a number
of software and hardware implementation options.

3.1 Software-based Peak Detection Schemes
Software Naive (SW-N): This is our baseline implementation,
which mostly follows Algorithm 1. However, we added a small
optimization to reduce the number of recorded peaks on a plateau
and a noise threshold. To reduce the number of peaks, the current
node is incremented with one if one of the neighbors have the
same value. This ensures that when one of the equal neighbors are
processed, they will see the incremented node as a peak and will
not be recorded as another peak. This optimization is particularly
useful when the user rests a palm on the screen. The noise threshold
reduces the number of memory loads and compares by ensuring
that comparisons to neighbor node values are only carried out if
the current node is over a predefined threshold.
Software Caching (SW-C): In the SW-N scheme, the values of
neighboring nodes are discarded when going to the next node.
Another option is to keep these values in a cache to reduce the
number of memory loads. Therefore, we modified the SW-N scheme
to keep a cache of the neighboring nodes. When the algorithm shifts
to the next node, the cache is also shifted and three new neighbors
are loaded. We refer to this scheme as SW-C.
Software Combined (SW-T): When there are very few nodes
over the threshold, the overhead of managing the cache may lead to
unnecessary loads — which may increase execution time. We there-
fore implemented a variant of the SW-C scheme that only updates
the cache if the value of the current node is over the threshold. We
refer to this scheme as SW-T.
Software Naive 16 bit (SW-N16): In our system, the on-chip
scratchpad reads and writes 32-bit values, but the image data is
16-bit. Therefore, it could be beneficial to pack two 16-bit image
values in each 32-bit memory word and thereby fetch two image
values on a single memory access. We refer to this scheme as SW-
N16. SW-N16 unpacks the image data before processing each value
as in SW-N.

3.2 Finger Finder Accelerator Variants
Finger Finder (FF-N): To reduce the energy consumption, we
implemented the functionality of the SW-N scheme as a hardware
accelerator with direct access to the sensor data scratchpad. For
each node, a hardware finite state machine reads a data element
from memory. In the next cycle, it compares the data element to
the threshold to evaluate if the next node’s address or one of the
neighbor addresses should be loaded. If the node is over the thresh-
old and all neighbors are equal, a table in memory will be updated
with the new peak found. As in the SW-N scheme, the current node
value will be incremented if it is equal to the value of one of its

(a) TF-10F-1 (b) TP-PALM-1 (c) PF-5F

Figure 3: Realistic data set examples (see Table 1).

neighbors to reduce the number of peaks in plateaus. We refer to
this scheme as FF-N.
Finger Finder Cached (FF-C): We also investigated an extension
to FF-N that caches neighbor values. By using a register bank for
the cache, we can update it in a single cycle by executing all shifts
in parallel. Also, the comparison between the current node and all
the cached neighbors are carried out simultaneously.
Area overhead of FF and FF-C: To establish the area overhead
of FF-N and FF-C, we synthesized them together with the rest of
MyWo’s prototype chip, using a standard cell library and RAMs
from a 180 nm commercial process (see Section 4 for details regard-
ing our setup). The area consumed by FF-N and FF-C was 3% and
6% of the RISC-V CPU area, respectively (excluding memories). The
RISC-V CPU accounts for less than one tenth of the total area of the
touch controller — rendering the area overhead of the accelerators
small in comparison. FF-N and FF-C are not on the critical path and
therefore do not affect clock frequency.

3.3 A Lower Bound for Energy Consumption
Oracle (O): To identify the potential for energy reduction realized
by the peak detection schemes, we designed an oracle scheme. The
oracle knows if a node is a peak without examining any neighbors.
In other words, the oracle reads every image value exactly once
and performs a single comparison. This behaviour matches the
behaviour of FF-N when all values in the image are below the noise
threshold, and we use this configuration to determine the energy
consumption and execution time of the oracle.

4 METHODOLOGY
To evaluate the different peak detection schemes we collected and
generated a number of data sets (see Table 1). Our data sets fall into
two categories: realistic and synthetic (see Figure 3 and 4 for exam-
ples). The realistic data sets were captured using an FPGA prototype
with a touch screen sensor and an image acquisition pipeline. The
synthetic data sets were specifically designed to investigate how the
different implementations behave in corner cases and were made
by a random data set generator written in Python. This enabled us
to experiment with different image sizes and different numbers of
peaks.

We simulated an RTL-level implementation of the digital parts of
the touch screen controller in Cadence’s Incisive RTL simulator [1].
The touch screen controller used the data sets as input to a program
running on the controller’s CPU. The program either performed
the peak detection in software (i.e., using SW-N, SW-C, SW-T, or
SW-N16) or started an FF accelerator (i.e., FF-N or FF-C). After the
chosen peak detection scheme completed, the result was checked

3



CARRV ’19, June 22, 2019, Phoenix, AZ Amundsen, et al.

Table 1: Realistic and synthetic data sets.

Abbrv. Screen Gesture #Sets Description Figure

TF Tablet (55x37) Fingers 15 Three data sets from each of five cases: One finger (TF-1F), two fingers (TF-2F), five fingers (TF-5F), 10
fingers (TF-10F), and two finger pinch (TF-P).

3a

TP Tablet (55x37) Palm 1 Hand on the sensor (TP-PALM). 3b

PF Phone (26x16) Fingers 15 Five data sets from each of three cases: One finger (PF-1F), two fingers (PF-2F), and five fingers (PF-5F). 3c

S 502 Synthetic 12 Clustered peaks with short (S-10C) and long gradient (S-5C) and random peaks with short (S-10R) and long
gradient (S-5R).

4a

SZ {102, 202, . . . , 602 } Synthetic 18 Data set for evaluating the sensitivity to image size with zero (SZ-XX-0P, where XX is the image size), one
(SZ-XX-1P), or 10 peaks (SZ-XX-10P).

4b

SNB 502 Synthetic 9 Data set to evaluate the sensitivity to the number of peaks (SNB-XXP, where XX is the number of peaks:
{0, 5, 10, . . . , 40}).

4c

(a) S-10R-1 (b) SZ-60-10P-1 (c) SNB-40P-1

Figure 4: Synthetic data set examples (see Table 1).

against a pre-generated list of peaks to ensure correctness. The
simulator outputs the number of elapsed cycles and a simulation
waveform which is input to the energy consumption analysis tool.

To find the energy consumption we used Joules [2], which is an
RTL-level energy estimation tool from Cadence. Joules synthesizes
the RTL code to a gate-level netlist and builds a realistic clock tree
for the design. It then takes the simulation waveforms as input, and
applies them to the synthesized design to determine the energy
consumption of the system, including RAMs, standard cells, and
analog modules. In addition to the energy consumption, Joules also
estimates the area consumed by FF-N and FF-C. In order to remove
the static current consumption from the current simulation, an
idle simulation is also performed and subtracted from the value.
In this simulation, the CPU has executed the “wait for interrupt”
instruction, the rest of the system is idle, and all clocks are running.

5 RESULTS
In this section, we present the performance and energy consump-
tion results for the peak detection schemes introduced in Section 3.
As aforementioned, we focus on peak detection and report the per-
formance and energy consumption of this step. For the software-
based schemes, energy measurements include the RISC-V core,
scratchpad memory, and data transfers. Similarly, the energy num-
bers for the FF variants include the accelerator, memory, and data
transfers. We name the input sets on the form dataset-subtype-ID
(see Table 1). For example, TF-10F-1 is of type tablet-sized screen
with fingers (TF), subtype 10 fingers (10F), and is dataset number 1.

5000 10000 15000 20000 25000 30000 35000
Average Execution Time (cycles)

0

5

10

15

20

A
vg

.
E

ne
rg

y
(u

J)

SW-N SW-C SW-T SW-N16 FF-N FF-C O

Figure 5: Execution time vs. energy consumption.

5.1 Performance and Energy Consumption
Figure 5 presents the average execution time (x-axis) and energy
consumption (y-axis) of all the peak detection schemes we con-
sidered across all data sets, both realistic and synthetic. The key
take-away is that the hardware accelerators substantially improve
performance and reduce energy consumption compared to the
software-based schemes. Also, energy consumption and perfor-
mance is strongly correlated — with the evaluated schemes being
placed on a diagonal line. The reason is that the average power
consumption of our system was very similar for all schemes. Thus,
execution time determines energy consumption since the average
energy consumption is the product of the average power consump-
tion and execution time.

FF-N and FF-C are both very close to the oracle scheme (i.e., O),
but FF-N is marginally better than FF-C. The reason is that the over-
head of maintaining the cache outweighs the benefit of reducing
the number of memory accesses. Similarly, SW-N outperforms the
other software-based schemes by a significant margin. Compared
to SW-C and SW-T, the reason is again that the overhead of main-
taining the cache outweighs its benefits. SW-T performs better than
SW-C because it only updates the cache for values that are above
the noise threshold. For SW-N16, its poor performance is due to
the shifting and masking required to separate the two 16-bit words
from the 32-bit word when comparing image values.

Figure 6a and 6b shows the performance of the different peak
detection schemes for all realistic data sets and a large and a small
touch screen, respectively. We normalize the results to SW-N —
since this is the most efficient software scheme. The figures rein-
force the key take-away from Figure 5: The hardware accelerators
are significantly faster than the software-based schemes and per-
form very close to the oracle scheme across all data sets. The SW-C
algorithm consistently performs 50% worse than SW-N due to cache

4



Finger Finder: A Low-Energy Peak Detection Accelerator for Capacitive Touch Controllers CARRV ’19, June 22, 2019, Phoenix, AZ

T
F

-1
0F

-1

T
F

-1
0F

-2

T
F

-1
0F

-3

T
F

-1
F

-1

T
F

-1
F

-2

T
F

-1
F

-3

T
F

-2
F

-1

T
F

-2
F

-2

T
F

-2
F

-3

T
F

-5
F

-1

T
F

-5
F

-2

T
F

-5
F

-3

T
F

-P
-1

T
F

-P
-2

T
F

-P
-3

T
P

-P
A

L
M

-1

0.0

0.5

1.0

1.5

2.0

N
or

m
.

E
xe

c.
T

im
e SW-N SW-C SW-T SW-N16 FF-N FF-C O

(a) Tablet-sized touch screen.

P
F

-1
F

-1

P
F

-1
F

-2

P
F

-1
F

-3

P
F

-1
F

-4

P
F

-1
F

-5

P
F

-2
F

-1

P
F

-2
F

-2

P
F

-2
F

-3

P
F

-2
F

-4

P
F

-2
F

-5

P
F

-5
F

-1

P
F

-5
F

-2

P
F

-5
F

-3

P
F

-5
F

-4

P
F

-5
F

-5

0.0

0.5

1.0

1.5

2.0

N
or

m
.

E
xe

c.
T

im
e SW-N SW-C SW-T SW-N16 FF-N FF-C O

(b) Phone-sized touch screen.

Figure 6: Execution time normalized to SW-N for the realis-
tic data sets.

S
-1

0C
-1

S
-1

0C
-2

S
-1

0C
-3

S
-1

0R
-1

S
-1

0R
-2

S
-1

0R
-3

S
-5

C
-1

S
-5

C
-2

S
-5

C
-3

S
-5

R
-1

S
-5

R
-2

S
-5

R
-3

0

1

2

3

N
or

m
.

E
xe

c.
T

im
e SW-N SW-C SW-T SW-N16 FF-N FF-C O

Figure 7: Execution time normalized to SW-N for the syn-
thetic data sets.

management overheads, while SW-T performs similarly to SW-N
since most nodes are below the noise threshold. SW-N16 outper-
forms SW-N when few nodes are over the threshold because it can
discard two nodes for a single memory access in this case.

The normalized execution time for the synthetic data sets (i.e., S
in Table 1) are shown in Figure 7. The key take-away from this fig-
ure is that execution time is highly data-dependent. The hardware
accelerators FF-N and FF-C still outperform the software-based
schemes, but the performance difference between the different
software-based schemes are larger than for the realistic data sets.
SW-C performs worse than SW-N in all cases. However, the per-
formance of SW-C approaches that of SW-N when more nodes are
over the threshold since caching becomes more beneficial in this
case. SW-T and SW-N16 have the opposite behaviour — execution
time increases when more nodes are above the threshold because
this enables cache management (SW-T) and necessitates unpacking
values (for SW-N16).

5.2 Simulation vs. ASIC
To validate the simulated energy consumption, we ran all SW
schemes and data sets on prototype silicon of the touch controller
and recorded their energy consumption (the prototype did not
contain an FF accelerator). The prototype uses the same standard

SW-N SW-C SW-T SW-N16
0

5

10

15

20

A
ve

ra
ge

E
ne

rg
y

(u
J) Simulated Measured

Figure 8: Simulated vs. measured energy consumption.

SW-N SW-C SW-T SW-N16 FF-N FF-C O
0

10

20

30

N
or

m
.

E
xe

c.
T

im
e

SZ-10-10P-1 SZ-20-10P-1 SZ-30-10P-1 SZ-40-10P-1 SZ-50-10P-1 SZ-60-10P-1

Figure 9: Image size scalability with synthetic data sets.

SW-N SW-C SW-T SW-N16 FF-N FF-C O
0

2

4

6

8

10
N

or
m

.
E

xe
c.

T
im

e

SNB-0P-1
SNB-25P-1

SNB-5P-1
SNB-30P-1

SNB-10P-1
SNB-35P-1

SNB-15P-1
SNB-40P-1

SNB-20P-1

Figure 10: Scalability with respect to the number of peaks.

cells, RAMs and other building blocks as was used in the power
simulation. Figure 8 shows the difference between simulation and
measured energy consumption. The simulated values are almost
2× of the measured values for all algorithms. This constant scal-
ing between the measured and simulated is to be expected when
using an RTL energy estimator, as there are many factors in the
measurements that do not match simulator assumptions (e.g., tem-
perature, voltage, process corner, standard cell characterization,
and simulated clock tree). That said, the prototype measurements
lead to the exact same ranking as the simulator — confirming that
our simulator-based approach captures the key trends.

5.3 Sensitivity Analysis
Figure 9 evaluates the scalability of the peak detection schemes with
respect to image size for 10-peak images. We normalize the results
to the 102 image size for all schemes. There are two key underlying
trends. The number of data elements grows quadratically, but the
number of elements above the noise threshold remain constant
since we do not change the number of peaks. Thus, for the schemes
where the overhead is driven by the number of elements (e.g., SW-
C) there is a clear quadratic trend. For the other schemes, this effect
is much less pronounced because values below the threshold are
quickly discarded.

Figure 10 shows how the schemes scale with respect to the num-
ber of peaks in an image. All schemes show the same behaviour
where the execution time saturates when the number of peaks in-
crease. This is caused by almost all nodes are over the threshold and

5



CARRV ’19, June 22, 2019, Phoenix, AZ Amundsen, et al.

must be evaluated when there are 30 or more peaks. The aforemen-
tioned unpacking overheads of the SW-N16 scheme causes severe
performance reduction when many nodes are over the threshold.

6 RELATEDWORK
The end of Dennard scaling has led to a significant interest in using
accelerators to improve the performance and energy-efficiency of
computing systems. Most prior work (e.g., [6, 12]) use accelerators
to improve power-efficiency and thereby improve performance.
This strategy is possible because high-performance systems mostly
operate under a fixed power budget — meaning that improving
power-efficiency enables higher performance.

In the embedded domain, the primary benefit of accelerators is to
reduce energy consumption and thereby improve battery-life. For
wearables, Stich [15] uses small configurable accelerators within
each core of a multi-core to create large virtual accelerators on
demand, while XPro [16] is an accelerator infrastructure for classi-
fication and data aggregation. Within robotics, Sacks et al. [14] and
Murray et al. [11] propose accelerators for motion planning and
control algorithms. Zhang et al. [22] exploit cross-frame similarities
to improve the energy-efficiency of video streaming on handheld
platforms, and the Galois Field processor [3] accelerates block cod-
ing and cryptography kernels in computing systems for the Internet
of Things. Yazdani et al. [21] accelerate automatic speech recogni-
tion, and PULP [5] is an accelerator for embedded computer vision.
These works share our motivation — using specialization to reduce
energy consumption — but target different applications.

Prior work on touch screen controllers have mainly focused on
improving the signal-to-noise ratio during IA and are therefore
orthogonal to this work. Ragheb et al. [13] present an IA-approach
based on differential sensing. Within differential sensing IA units,
Won and Kim [17] propose an offset compensation technique, and
Kim et al. [9] present a touch position recovery algorithm. A num-
ber of works have focused on IA units based on frequency division
concurrent sensing. For instance, Kim et al. [8] present an inter-
leaved sine wave generator while Choi et al. [4] present a hardware
implementation of a fast Fourier transform.

A number of researchers have proposed complete touch screen
controllers (e.g., [7]). These works focus on the IA-unit while the
IPP step is implemented with a commodity microcontroller or in
an FPGA. Thus, these works differ from ours since they do not
evaluate different IPP implementation options.

7 CONCLUSION
In this paper, we have thoroughly evaluated software and hardware
schemes for peak detection — the subsystem responsible for identi-
fying touches in capacitive touch screen controllers. We find that
peak detection lends itself to acceleration, and our Finger Finder
accelerator (i.e., FF-N) reduces the energy consumption by 7.6×
compared to the best software-based scheme. If adding an accelera-
tor is not desirable, we find that the naive software implementation
(i.e., SW-N) is the best choice. The reason is that the overheads of
implementing caching in software are significant and outweigh the
benefits. Since peak detection accounts for approximately 2.5% of
the total energy consumption of our touch screen controller, we

will direct our future efforts towards subsystems that have a more
significant impact on overall energy consumption.

ACKNOWLEDGMENTS
This work has been supported by RFF Midt-Norge (project #272179).

REFERENCES
[1] Cadence. 2018. Incisive Enterprise Simulator. https://www.cadence.com/.
[2] Cadence. 2018. Joules RTL Power Solution. https://www.cadence.com/.
[3] Yajing Chen, Shengshuo Lu, Cheng Fu, David Blaauw, Ronald Dreslinski, Jr.,

Trevor Mudge, and Hun-Seok Kim. 2017. A programmable Galois field proces-
sor for the internet of things. In Proceedings of the International Symposium on
Computer Architecture (ISCA). 55–68.

[4] G. Choi, M. G. A. Mohamed, and H. Kim. 2016. New FFT design with enhanced
scan rate for frequency division concurrent sensing of mutual-capacitance touch
screens. In Int. Conf. on Electronics, Information, and Communications (ICEIC).

[5] Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca Benini. 2016.
PULP: A ultra-low power parallel accelerator for energy-efficient and flexible
embedded vision. Journal of Signal Processing Systems 84, 3 (2016), 339–354.

[6] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
2010. Understanding sources of inefficiency in general-purpose chips. In Proceed-
ings of the Int. Symp. on Computer Architecture (ISCA). 37–47.

[7] H. Kim, Y. Choi, S. Byun, S. Kim, K. Choi, H. Ahn, J. Park, D. Lee, Z. Wu, H.
Kwon, Y. Choi, C. Lee, H. Cho, J. Yu, and M. Lee. 2010. A mobile-display-driver
IC embedding a capacitive-touch-screen controller system. In International Solid-
State Circuits Conference (ISSCC). 114–115.

[8] J. Kim, M. G. A. Mohamed, and H. Kim. 2015. Design of a Frequency Division
Concurrent sine wave generator for an efficient touch screen controller SoC. In
International Symposium on Consumer Electronics (ISCE). 1–2.

[9] Ji-Ho Kim, Dong-Min Won, and HyungWon Kim. 2016. Touch Position Recovery
Algorithm for Differential Sensing Touch Screen. Journal of information and
communication convergence engineering 14, 2 (2016), 106–114.

[10] M. G. A. Mohamed, Unyong Jang, Incheol Seo, HyungWon Kim, Tae-Won Cho,
Hyeoung Kyu Chang, and Sunou Lee. 2014. Efficient algorithm for accurate touch
detection of large touch screen panels. In Int. Symp. on Consumer Electronics.

[11] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin. 2016. The microar-
chitecture of a real-time robot motion planning accelerator. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 1–12.

[12] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan, Christos
Kozyrakis, andMark A. Horowitz. 2013. Convolution engine: Balancing efficiency
& flexibility in specialized computing. In Proc. of the Int. Symp. on Computer
Architecture (ISCA).

[13] A N Ragheb, M G A Mohamed, and HyungWon Kim. 2016. Differentiator Based
Sensing Circuit For Efficient Noise Suppression of Projected Mutual-Capacitance
Touch Screens. In Int. Conf. on Electronics, Information, and Communications.

[14] J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh. 2018. RoboX: An
end-to-end solution to accelerate autonomous control in robotics. In Proceedings
of the International Symposium on Computer Architecture (ISCA). 479–490.

[15] Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. 2018. Stitch:
Fusible heterogeneous accelerators enmeshed with many-core architecture for
wearables. In International Symposium on Computer Architecture (ISCA). 13.

[16] AosenWang, Lizhong Chen, andWenyao Xu. 2017. XPro: A cross-end processing
architecture for data analytics in wearables. In Proceedings of the International
Symposium on Computer Architecture (ISCA). 69–80.

[17] Dong-MinWon and HyungWon Kim. 2018. Enhancement of touch screen sensing
based on voltage shifting differential offset compensation. Analog Integrated
Circuits and Signal Processing 94, 2 (2018), 205–215.

[18] Kaige Yan, Xingyao Zhang, and Xin Fu. 2015. Characterizing, modeling, and
improving the QoE of mobile devices with low battery level. In Proceedings of the
Int. Symp. on Microarchitecture (MICRO). 713–724.

[19] I. Yang and O. Kwon. 2011. A touch controller using differential sensing method
for on-cell capacitive touch screen panel systems. IEEE Transactions on Consumer
Electronics 57, 3 (2011), 1027–1032.

[20] YANO Research. 2017. Capacitive touchscreen (touch panel)/components global
market: Key research findings 2017. https://www.yanoresearch.com/.

[21] R. Yazdani, A. Segura, J. M. Arnau, and A. Gonzalez. 2016. An ultra low-power
hardware accelerator for automatic speech recognition. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 1–12.

[22] Haibo Zhang, Prasanna Venkatesh Rengasamy, Shulin Zhao, Nachiappan Chi-
dambaram Nachiappan, Anand Sivasubramaniam, Mahmut T. Kandemir, Ravi
Iyer, and Chita R. Das. 2017. Race-to-sleep + content caching + display caching:
A recipe for energy-efficient video streaming on handhelds. In Proceedings of the
Int. Symp. on Microarchitecture (MICRO). 517–531.

6

https://www.cadence.com/
https://www.cadence.com/
https://www.yanoresearch.com/

	Abstract
	1 Introduction
	2 The MyWo Touch Controller
	3 Implementing Peak Detection
	3.1 Software-based Peak Detection Schemes
	3.2 Finger Finder Accelerator Variants
	3.3 A Lower Bound for Energy Consumption

	4 Methodology
	5 Results
	5.1 Performance and Energy Consumption
	5.2 Simulation vs. ASIC
	5.3 Sensitivity Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

