
OpenPiton+Ariane: The First Open-Source, SMP Linux-booting
RISC-V System Scaling From One to Many Cores

Jonathan Balkind∗
Katie Lim
Fei Gao

Jinzheng Tu
David Wentzlaff

jbalkind@princeton.edu
katielim@cs.washington.edu

feig@princeton.edu
jinzheng@princeton.edu
wentzlaf@princeton.edu

Princeton Parallel Group, Princeton University
Princeton, New Jersey

Michael Schaffner∗
Florian Zaruba
Luca Benini

schaffner@iis.ee.ethz.ch
zarubaf@iis.ee.ethz.ch
benini@iis.ee.ethz.ch

Integrated Systems Laboratory, ETH Zurich
Zurich, Switzerland

ABSTRACT
This paper introduces OpenPiton+Ariane, a permissively-licensed
open-source framework designed to enable scalable architecture re-
search prototypes. With the recent addition of SMP Linux running
on FPGA, OpenPiton+Ariane is the first open-source, SMP Linux-
booting RISC-V system that scales from single-core to manycore.
OpenPiton+Ariane inherits capabilities from both the Ariane and
OpenPiton projects, bringing with it simulation and FPGA emula-
tion infrastructure, as well as synthesis and back-end scripts for
ASIC development. The P-Mesh cache system from OpenPiton was
enhanced with support for RISC-V atomic operations but remains
otherwise unmodified, thus providing a mature, well-validated
manycore memory system. Likewise, Ariane’s cache subsystem
was adapted to connect to P-Mesh but the core remains other-
wise unmodified, which made Linux bring-up straightforward. This
paper gives an overview of the system architecture and the modifi-
cations that were necessary to join the two open-source projects.
Further, we describe the supported simulation and emulation flows
and provide FPGA synthesis results for several different system
configurations.

CCS CONCEPTS
• Computer systems organization → Reduced instruction
set computing; Multicore architectures; • Hardware → Re-
configurable logic and FPGAs; Very large scale integration design.

KEYWORDS
RISC Processors, Computer Architecture, Multicore Architecture,
Coherency, Cache

1 INTRODUCTION
Less than one year ago, Ariane was a single-core processor and
OpenPiton relied purely on the OpenSPARC T1 core. Through our
teams’ mutual interest in building an open-source RISC-V many-
core platform, we decided to integrate Ariane and OpenPiton, and

∗Both authors contributed equally to this work.

we made rapid progress in doing so. Thanks to the thorough vali-
dation of the independent systems, it took less than three months
to build the combined manycore which could run bare metal tests
in simulation without noticeable validation issues. A further two
months of work brought us to booting Linux on 4 cores on FPGA.
In fact, it took only one day from the first successful Linux boot on
a single-core to doing the same with a dual-core system.

The combinedOpenPiton+Ariane platform [17], is a permissively-
licensed open-source framework designed to enable scalable archi-
tecture research prototypes. With the recent addition in release 11
of SMP Linux running on FPGA, OpenPiton+Ariane is the world’s
first open-source, SMP Linux-booting RISC-V system that scales
from single-core to manycore. This makes OpenPiton+Ariane the
ideal RISC-V hardware research platform.

OpenPiton began as theworld’s first open source, general-purpose,
multithreaded manycore processor and framework [4]. It leverages
the industry-hardened OpenSPARC T1 core [15, 16] with modi-
fications and builds upon it with a scratch-built, scalable uncore
(known as P-Mesh) creating a flexible, modern manycore design.
OpenPiton provides a complete verification infrastructure of over
8000 tests, is supported by mature software tools, runs full-stack
multiuser Debian Linux, and is written in industry standard Verilog.
In addition, OpenPiton provides synthesis and back-end scripts
for ASIC and FPGA to enable other researchers to bring their de-
signs to implementation. Multiple implementations of OpenPiton
have been created including a taped-out 25-core implementation in
IBM’s 32 nm process and multiple Xilinx FPGA prototypes [13, 14].

It is on this mature foundation that we built OpenPiton+Ariane.
Ariane [22] is a 64-bit RISC-V application processor, which imple-
ments the RV64GC ISA. Ariane has been taped-out in multiple tech-
nologies including GlobalFoundries’ 22 nm FDSOI process, and is
capable of booting Linux single-core. By modifying the L1 cache for
Ariane to support the P-Mesh cache-coherence protocol, we built
OpenPiton+Ariane into an SMP Linux-booting, RISC-V manycore.
OpenPiton+Ariane inherits all of the capabilities of OpenPiton and
of Ariane, bringing them together in a single scalable, configurable,
and easy-to-use platform ideal for rapid prototyping of ideas.



Balkind and Schaffner, et al.

Core Cache Subsystem

L1I$
256bit lines
4 way, 16kB

FE

LSU

L1.5
AdapterL1D$

128bit lines
4 way, 8kB

(wr-through)

Ariane P-Mesh

L1.5
128bit lines
4 way, 8kB

NoC 1

NoC 2

NoC 3
NoC

Routers

LD
PTW

ST

AMO

WR Bu�er

Tile Chipset

PLIC

CLINT

Debug 
Module

Bootrom

UART

Ethernet

DRAM Ctrl

NoC 3NoC 2NoC 1

L2
512bit lines
4 way, 64kB

Tile

Tile

Ariane P-Mesh

P-Mesh

Ariane

...

SD

...

Figure 1: Overview of the OpenPiton+Ariane architecture. Each tile contains one Ariane core, private L1 data and instruction
caches, a private L1.5 cache, 3 NoC Routers and a shared L2 cache slice. The chipset contains important platform peripherals
such as the DDR memory controller, UART, and the RISC-V-specific peripherals.

Table 1: Supported OpenPiton+Ariane configuration op-
tions. Bold indicates defaults. Reproduced [4] and updated.

Component Configurability Options

Cores (per chip) Up to 65,536
Cores (per system) Up to 500 million
Floating-Point Unit Present/Absent
TLBs Number of entries (16)
L1 I-Cache Number of sets, ways (16kB, 4-way)
L1 D-Cache Number of sets, ways (8kB, 4-way)
L1.5 Cache Number of sets, ways (8kB, 4-way)
L2 Cache (per tile) Number of sets, ways (64kB, 4-way)
Intra-chip Topologies 2D Mesh, Crossbar
Bootloading SD/SDHC Card, UART, JTAG

This paper gives an overview of the architecture and modifica-
tions of the Ariane core and P-Mesh cache subsystem in Section 2,
followed by an overview of the simulation and emulation environ-
ments in Section 3. Current limitations and future improvements
are outlined in Section 4.

2 ARCHITECTURE
The OpenPiton processor system is a flexible, tiled architecture
that supports different network-on-chip (NoC) topologies to in-
terconnect a configurable number of processor tiles. The default
configuration leverages a 2D mesh topology as shown in Figure 1,
and the OpenPiton+Ariane release enables the instantiation of an
Ariane RISC-V core within the tiles. Each tile further contains a
private L1.5 cache, the NoC routers and a shared L2 cache slice. The
chipset contains important platform peripherals such as the DDR
memory controller, UART, and RISC-V specific peripherals. The
full configuration space is summarised in Table 1, and the above
described components are explained in more detail below.

2.1 RISC-V Core
Ariane is a 64 bit, single-issue, in-order RISC-V core (RV64GC) and
its block-diagram is shown in Figure 2. It has support for hard-
ware multiply/divide, atomic memory operations as well as an IEEE
compliant Floating Point Unit (FPU). Moreover, it has support for

the compressed instruction set extension as well as the full privi-
leged instruction set extension. It implements the 39 bit, page-based
virtual memory scheme SV39 and boots Linux single-core on FPGA.

To keep Instruction per Cycle (IPC)-losses moderate due to its six
stage pipelined design it has a complete branch-prediction infras-
tructure. The instruction front-end which includes PC generation
and instruction fetch from the private instruction cache is decou-
pled from the processor’s back-endwhich consists of the instruction
decode, issue, execute and commit stages. The issue stage tracks
operand dependencies in a scoreboard and issues decoded and ready
instructions in program order to the execute stage. All execution
units are ready-valid hand-shaked and support retiring instruc-
tions out-of-order into a lightweight Re-order Buffer (ROB) which
commits instructions in issue order to enable precise exception
trapping.

The core’s Load Store Unit (LSU)manages all integer and floating-
point loads and stores as well as address translation and atomic
memory operations. It has a split Translation Lookaside Buffer (TLB)
for the instruction fetch and the data port. A hardware Page Table
Walker (PTW) transparently manages TLB refills on TLB misses.
Loads, stores and PTW requests are served on three different ports
on a private, write-through data cache which is described in more
detail in Section 2.2. Atomic memory operations bypass the regular
load/store path and are handled on a separate interface on the data
cache. When the core requests an atomic memory operation, the
read copy is invalidated and the L1 data cache (re-)requests the data
from the memory system together with the corresponding memory
operation. The standard configuration of low-level core parameters
that is used in OpenPiton is shown in Table 2.

2.2 Cache Subsystem
The Transaction-Response Interface (TRI) is the interface between
the L1 caches in the core and the L1.5 cache of OpenPiton’s P-Mesh
cache subsystem. TRI is a generic and simple interface for cores
adhering to a write-through cache protocol, and has been developed
as part of JuxtaPiton [10, 11], a previous evolution of OpenPiton
where T1 cores could be replaced with PicoRV32 cores to build the
world’s first open-source, heterogeneous-ISA processor. Since the



OpenPiton+Ariane: The First Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many Cores

ID Execute

Decoder

Compressed
Decoder

Is
su

e

Reg�le
Read

LSU

Multiplier Write

commit

Commit

DTLB

PTW
EP

C
CA

U
SE

V

Instruction
Queue

Mispredict

Branch

Issue

Scoreboard

Re-
aligner

Privilege
Check

Exception

ALU

Branch Unit

Frontend

PC
Select

4

fro
m

 M
M

U
I$

In
st

r S
ca

n

instr

32

imm

PC

ITLB

CSR
Read

BHT

BTB

RAS

CSR
Write

Sc
or

eb
oa

rd
/R

O
B

Commit

D$

irq

Reg�le
CSR Bu�er

FPU

Figure 2: Ariane Core Architecture

original L1 cache of Ariane adhered to a write-back protocol and
did not have support for invalidation messages and atomics, a new
parametric write-through L1 cache system has been designed that is
compatible to the P-Mesh TRI1. The L1 data cache is equipped with
a merging write-buffer with forwarding capability to ensure good
write performance. This write-buffer is currently parameterised to
be eight 64 bit words deep and support two outstanding write trans-
actions towards the L1.5. The number of outstanding transactions
is currently aligned with the number of hardware threads that the
T1 processor uses, since the T1 can only have one pending store
per hardware thread.

Beyond the L1 cache, OpenPiton+Ariane uses the same P-Mesh
cache subsystem provided in OpenPiton, with few modifications.
OpenPiton provides a local private cache per tile (known as the
L1.5, but equivalent to other systems’ L2 caches) and a slice of the
distributed, shared last-level cache (known as the L2) and directory
per tile. The L1.5 and L2 are both inclusive and can be parame-
terised completely independently of each other in terms of size
and associativity. The P-Mesh coherence protocol is a four-hop
protocol where L1.5 caches only communicate with L2 caches and
vice versa. P-Mesh provides three physical NoCs which carry equiv-
alence classes of traffic designed to eliminate deadlock. The NoCs
can be replaced with other network topologies (as shown in Table
1) provided that point-to-point ordering is maintained.

2.3 Support for RISC-V Atomic Operations
P-Mesh originally only supported SPARC atomic operations (swap
and compare-and-swap) and hence we modified the cache subsys-
tem to support the standard atomic instructions for RISC-V. First,
the L1 data cache drains the write-buffer and pending loads in the
MSHR, and issues the atomic operation sequentially consistently to
P-Mesh (as though all atomics have both aq and rl bits set). Upon
receiving a fetch-and-op atomic operation, the L1.5 cache first in-
validates the corresponding cache-line in both the L1.5 and L1 and
then forwards the operation to the L2. The L2 further invalidates all

1The new L1 cache system also contains an option to switch the interface to an AMBA
AXI protocol adapter that has support for atomics.

Table 2: Ariane Standard Configuration

Parameter Standard Parameter Standard

BTB Entries 64 SAQ Depth 4
BHT Entries 128 LAQ Depth 1
RAS Depth 2 Store Latency 0
ROB Size 8 Load Latency 1
Int. Regfile WR Ports 2 – –

other sharers, if any. The read-modify-write process is finished in
the L2 data array with a small atomic ALU we added into the path
used by the existing swap operation. Finally, the old value which
was read from the L2 is returned to the core.

Differently from those fetch-and-op atomic instructions, load-
reserved/store-conditional (LR/SC) is handled within the L1.5. After
receiving an LR, the L1.5 requests an upgrade for the line to the
“M” MESI state and sets the LR/SC flag to high. From then, any
operation that changes the line’s MESI state will clear the LR/SC
flag (e.g. a load from another core which downgrades the MESI
state to “S”). The later SC returns 0 (meaning the store succeeded)
only when the LR/SC flag is still high, otherwise the store fails and
1 is returned.

2.4 Platform Peripherals
The OpenPiton framework supports the following essential plat-
form peripherals:

• UART: We use the Xilinx AXI UART16550 IP core, which is
connected using a P-Mesh to AXI-Lite bridge. It is used both
for standard serial I/O for interaction with the user and for
bootloading using pitonstream (as described in section 3.1).

• SD/SDHC: The FPGA emulation can boot from our provided
SD/SDHC controller, which comes from OpenPiton. The con-
troller is based on an open-source Wishbone controller [6]
(connected to P-Mesh) and includes a hardware driver to
initialise the device. The full SD card is then mapped into the
memory space for straightforward access for OS bootloading.

• DRAM:Wemake use of the FPGA-specific DDR3 and DDR4
controllers provided by Xilinx, wrapped in a P-Mesh NoC to
Xilinx interface bridge.

• Ethernet:As for OpenPiton, we use the Xilinx AXI Ethernet
Lite 10/100 MAC in OpenPiton+Ariane. Standalone Ariane
also supports the lowRISC Ethernet MAC, which is a port
of Alex Forencich’s GHz RGMII design [7, 12]. We have the
option to switch to the lowRISC Ethernet MAC in future to
achieve higher bandwidth.

The RISC-V ecosystem specifies a handful of peripherals and addi-
tional core infrastructure which we implement and support in our
system. This includes:

• Debug: The RISC-V draft spec v0.13 [19] compliant debug
module governs external, multi-hart, run-control debug. The
cores use their existing pipeline to facilitate debug function-
ality. An external debug request signal redirects the core to
a “programmable” debug ROM which injects debug instruc-
tions into the core’s pipeline.



Balkind and Schaffner, et al.

Table 3: Some of the supported FPGA build configurations. Both cores have the same default cache configuration (see Table 1).
The results have been generated with Vivado 2018.2, using OpenPiton r11 / Ariane v4.1 including additional development
patches that will be part of upcoming releases.

Board Name / Clock Config Core FPU LUTs Registers RAM Tiles DSPs
FPGA Type [MHz] X × Y Type [y/n] [k] [k] [#] [#]
Digilent NexysVideo
Artix 7
7a200tsbg484

30 1 × 1 Ariane no 95 (71%) 72 (27%) 66 (18%) 16 (2%)
30 1 × 1 Ariane yes 110 (82%) 75 (28%) 66 (18%) 27 (4%)
30 1 × 1 OpenSPARCT1 yes 115 (86%) 96 (36%) 59 (16%) 13 (2%)

Digilent Genesys2
Kintex 7
7k325tffg900-2

67 1 × 1 Ariane no 86 (42%) 72 (17%) 66 (15%) 16 (2%)
67 1 × 1 Ariane yes 99 (49%) 75 (18%) 66 (15%) 27 (3%)
67 1 × 1 OpenSPARCT1 yes 105 (52%) 91 (22%) 59 (13%) 16 (2%)
67 2 × 1 Ariane no 141 (69%) 113 (28%) 124 (28%) 16 (4%)
67 2 × 1 Ariane yes 167 (82%) 120 (30%) 124 (28%) 54 (6%)
67 2 × 1 OpenSPARCT1† yes 160 (79%) 137 (33%) 112 (25%) 32 (4%)

Xilinx VC707
Virtex 7
7vx485tffg1761-2

60 1 × 1 Ariane no 99 (33%) 73 (12%) 63 (6%) 16 (<1%)
60 1 × 1 Ariane yes 114 (37%) 77 (13%) 63 (6%) 27 (1%)
60 1 × 1 OpenSPARCT1 yes 119 (39%) 97 (16%) 53 (5%) 16 (<1%)
60 2 × 2 Ariane no 284.1 (94%) 202 (33%) 237 (23%) 64 (2%)
60 3 × 1 Ariane yes 268 (88%) 169 (28%) 179 (17%) 81 (3%)
60 3 × 1 OpenSPARCT1† yes 255 (84%) 208 (34%) 158 (15%) 48 (2%)

Xilinx VCU118
Virtex US+
xcvu9pflga2104-2L

100 1 × 1 Ariane no 90 (8%) 81 (3%) 88 (4%) 19 (<1%)
100 1 × 1 Ariane yes 103 (9%) 84 (4%) 89 (4%) 30 (<1%)
100 1 × 1 OpenSPARCT1 yes 108 (9%) 100 (4%) 79 (4%) 19 (<1%)
100 4 × 4 Ariane no 923 (78%) 704 (30%) 963 (45%) 259 (4%)
100 4 × 2 Ariane yes 583 (49%) 399 (17%) 495 (23%) 219 (3%)

†Without Coherence Domain Restriction [8] in caches.

• CLINT: The Core Local Interrupt Controller (CLINT) pro-
vides Inter Processor Interrupts (IPI) and a common time-
base. Each core has its own timer compare register which
triggers an external timer interrupt when it matches the
global time-base.

• PLIC: The Platform Level Interrupt Controller (PLIC) is an
interrupt controller whichmanages external peripheral inter-
rupts. It provides a context for each privilege level and core.
The software can configure different priority thresholds for
each context. The PLIC is still subject to official standardisa-
tion. However, there is already an implementation including
a Linux driver, which is agreed upon.

2.5 Automatic Device Tree Generation
In order to capture the different platform configurations that Open-
Piton+Ariane provides, we added an automatic device tree genera-
tion script to the PyHP preprocessor from OpenPiton. This script
parses an XML description of the system address map and platform
peripherals (which is also used to generate the chipset crossbar),
and together with the information about the number of cores and
the clock frequency it generates a device tree that is compiled
into a bootrom attached to the peripheral space. The "zero-stage"
bootloader stored in that bootrom initialises the cores and loads
a pointer to the device tree blob into register a1 as per RISC-V
convention. With this automatic device tree generation, the same
Linux image can be booted on differently parameterised instances,
automatically adapting to the platform at runtime.

3 SIMULATION & EMULATION PLATFORMS
Ariane plugs into the sims simulation infrastructure provided in
OpenPiton. This handles the building of simulation models with
each of the supported simulators (at present, Mentor QuestaSim,
Synopsys VCS and Verilator), as well as running one test or an
entire test suite against the compiled model. We have enhanced
sims to support compilation of RISC-V assembly and C tests, and
the direct use of pre-compiled binaries. The primary bare-metal test
suite is the publicly available riscv-tests repository [20]. Beyond
bare-metal testing, we also simulate Linux boot for debugging,
which takes approximately 4 days to boot for a single core (DRAM
reduced to 128MB to speed up the memory initialisation phase in
simulation).

3.1 FPGA Flows
The Ariane core option has been integrated into the OpenPiton
protosyn build flow and is available for the Digilent Nexys Video
and Genesys2 boards, as well as the Xilinx VC707 and VCU118 de-
velopment boards. The resource consumption of a set of builds with
the standard cache configuration and different numbers of cores is
shown in Table 3. The LUT distribution for single-core Genesys2
builds is shown in Figure 3. The core amounts to around 22%-41% of
the total resources, depending on the actual configuration (Ariane
with or without FPU, OpenSPARC T1 with FPU). Further, we note
that the T1 is around 23% and 93% larger than Ariane with and



OpenPiton+Ariane: The First Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many Cores

Core
L1

L1.5
L2

NoC
Memc

SD
UART

Periph
Misc

100%

0 20 40 60 80 100 120
#kLUT

Ariane
(no FPU)

Ariane

Open
SPARC T1

94%

82%

Figure 3: LUT distribution of single-core builds for the
Genesys2 board (Kintex 7k325tffg900-2). The percentages
are normalized with respect to the OpenSPARC total size.

without FPU, respectively. This area difference can be attributed in
part to the T1’s register windows and its reliability features2.

pitonstream is a tool and bootloading option for testing designs
on FPGA. The user specifies a set of tests that they want to run,
and those are compiled on the host machine and streamed into the
memory of the FPGA over the UART link. pitonstream will run
one test at a time and log its output and success or failure.

Since OpenPiton+Ariane is equipped with a RISC-V compliant
DebugModule, the FPGA configurations can be in-system debugged
via JTAG using, e.g., OpenOCD with GDB. This can also be used as
a bootloading option for Linux as an alternative to UART and SD.

3.2 ASIC Flows
OpenPiton is a rare example of an open-source processor which
also provides open-source synthesis and back-end scripts for ASIC
development. Alongside an ongoing internal effort to refactor the
flow to be more process- and tool-generic, we have begun to run the
Ariane tile design through the flow. In particular, we have performed
synthesis of the core in GlobalFoundries 14 nm technology and are
working through the rest of the flow. Once the tile has been fully
placed and routed, we intend to release the updated scripts to the
community in the same way as for the SPARC-based OpenPiton.

4 ROADMAP
OpenPiton+Ariane is actively being improved and several exten-
sions and features are planned, as described below. We are also
open to any any input from the community in that regard.

4.1 Software and Testing
• Litmus testing: We have begun to test the implementation
of memory consistency using a variant of the open-source lit-
mus/herd/diy suites [1–3], both in simulation and on FPGA.
This testing framework is giving us valuable pre-silicon feed-
back to enable us to avoid memory consistency violations
and will be open-sourced once it is mature.

• Torture tests: Another common testing framework is
riscv-torture [5] which is used to perform many random
tests of a RISC-V processor. Ariane supports this infrastruc-
ture, but we have not yet included it in OpenPiton+Ariane.

2Note that on FPGA, we synthesise the T1 only with one hardware thread, thus there
is no hardware multithreading overhead.

• RISC-V-DV: This is a recently released UVM-based verifica-
tion framework for RISC-V RV32IMC/RV64IMC processors
by Google [9]. Adding support for this framework could
further increase the test coverage of our verification suite.

• OpenSBI and Bootloading: The RISC-V community is
moving towards a common approach to firmware and boot-
loading. We plan to move to the community-supported
OpenSBI [18] from the Berkeley Bootloader (BBL) that we
currently use for firmware. We also plan to add support for
a more mainstream bootloader such as U-Boot [21], rather
than relying on BBL’s bootloading capabilities.

• Linux Distribution: Several mainstream Linux distribu-
tions, including Fedora and Debian, are beginning to provide
RISC-V ports. With OpenSBI and U-Boot in place, we will
be able to support these distributions with little to no modi-
fication to the software or hardware.

4.2 Hardware
• Cache Evolution: The current cache is still parameterised
according to the T1 configuration (Table 1), but as we move
away from that particular instance, we plan to add further
options to OpenPiton. E.g., we plan to add an option to
change the cache-line size of all caches to 512 bit as it is
done in several other cache-systems today. Further, we plan
to optimise the default parameters to provide the optimum
configuration in terms of line size, associativity and capacity.

• FPGAFlows:Weplan to add support for other FPGA targets
such as the BittWare XUPP3R (similar to the VCU118) and
Amazon’s AWS F1 platform. Additionally, a RISC-V recre-
ation of PicoPiton [4] fits on the Digilent Nexys A7 (formerly
Nexys 4 DDR) Artix-7 100T FPGA and would be very useful
for educational purposes.

5 CONCLUSION
We have presented the extensions and modifications that were nec-
essary to bring together Ariane and OpenPiton, and have given an
overview of the main characteristics and supported infrastructure
of the resulting OpenPiton+Ariane system. The permissive BSD,
Apache 2.0 and Solderpad 0.51 licenses enable everyone to freely
use this platform - be it to study computer architecture, try out
new ideas, or even to develop next-generation processor platforms.
Going forward there are still a lot of exciting features and modifi-
cations to be incorporated into this platform and we look forward
to engaging with the community to make those happen.

ACKNOWLEDGEMENTS
This material is based on research sponsored by the NSF under
Grants No. CNS-1823222, CCF-1453112, and CCF-1823032, Air Force
Research Laboratory (AFRL) andDefenseAdvanced Research Projects
Agency (DARPA) under agreements No. FA8650-18-2-7846, FA8650-
18-2-7852, and FA8650-18-2-7862. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of Air Force



Balkind and Schaffner, et al.

Research Laboratory (AFRL) andDefenseAdvanced Research Projects
Agency (DARPA), the NSF, or the U.S. Government.

REFERENCES
[1] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus:

Running Tests against Hardware. In Tools and Algorithms for the Construction and
Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 41–44.

[2] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. Fences in
weak memory models (extended version). Formal Methods in System Design 40, 2
(01 Apr 2012), 170–205. https://doi.org/10.1007/s10703-011-0135-z

[3] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-
elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/
2627752

[4] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
et al. 2016. Openpiton: An open source manycore research framework. In ACM
SIGARCH Computer Architecture News, Vol. 44. ACM, 217–232.

[5] Berkeley Architecture Research (UC Berkeley). 2012. riscv-torture. https://github.
com/ucb-bar/riscv-torture. (2012).

[6] John Clayton and Marek Czerski. 2013. Wishbone SD Card Controller. https:
//opencores.org/projects/sd_card_controller. (2013).

[7] Alex Forencich. 2019. Verilog Ethernet Components. https://github.com/
alexforencich/verilog-ethernet. (2019).

[8] Yaosheng Fu, Tri M. Nguyen, and David Wentzlaff. 2015. Coherence domain
restriction on large scale systems. In Proceedings of the 48th International Sympo-
sium on Microarchitecture (MICRO-48). Association for Computing Machinery,
686–698. https://doi.org/10.1145/2830772.2830832

[9] Google. 2019. RISCV-DV. https://github.com/google/riscv-dv. (2019).
[10] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2018. JuxtaPiton: Enabling

Heterogeneous-ISA Research with RISC-V and SPARC FPGA Soft-cores. CoRR
abs/1811.08091 (2018). arXiv:1811.08091 http://arxiv.org/abs/1811.08091

[11] Katie Lim, Jonathan Balkind, and David Wentzlaff. 2019. JuxtaPiton: Enabling
Heterogeneous-ISA Research with RISC-V and SPARC FPGA Soft-cores. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA ’19). ACM, New York, NY, USA, 184–184. https://doi.org/10.
1145/3289602.3293958

[12] lowRISC. 2019. RGMII Ethernet MAC. https://github.com/lowRISC/ariane-
ethernet. (2019).

[13] Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Jonathan Balkind,
Alexey Lavrov, Mohammad Shahrad, Samuel Payne, and David Wentzlaff. 2017.
Piton: A manycore processor for multitenant clouds. Ieee micro 37, 2 (2017),
70–80.

[14] Michael McKeown, Alexey Lavrov, Mohammad Shahrad, Paul J Jackson, Yaosheng
Fu, Jonathan Balkind, Tri M Nguyen, Katie Lim, Yanqi Zhou, and David Wentzlaff.
2018. Power and Energy Characterization of an Open Source 25-Core Manycore
Processor.. In HPCA. 762–775.

[15] Oracle. 2008. OpenSPARC T1 Microarchitecture Specification.
https://www.oracle.com/technetwork/systems/opensparc/t1-01-opensparct1-
micro-arch-1538959.html. (2008).

[16] Ishwar Parulkar, Alan Wood, James C Hoe, Babak Falsafi, Sarita V Adve, Josep
Torrellas, and SubhasishMitra. 2008. OpenSPARC: An open platform for hardware
reliability experimentation. In Fourth Workshop on Silicon Errors in Logic-System
Effects (SELSE). Citeseer, 1–6.

[17] Princeton University. 2019. OpenPiton Research Platform. https://github.com/
PrincetonUniversity/openpiton. (2019).

[18] RISC-V Foundation. [n. d.]. OpenSBI. ([n. d.]).
[19] RISC-V Foundation. 2018. RISC-V External Debug Support Version 0.13 -

DRAFT. https://github.com/riscv/riscv-debug-spec/releases/download/task_
group_vote/riscv-debug-draft.pdf. (2018).

[20] RISC-V Foundation. 2019. riscv-tests. https://github.com/riscv/riscv-tests. (2019).
[21] Wolfgang Denk. [n. d.]. Das U-Boot. ([n. d.]).
[22] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:

Energy and Performance Analysis of a Linux-ready 1.7GHz 64bit RISC-V Core in
22nm FDSOI Technology. arXiv e-prints, Article arXiv:1904.05442 (April 2019),
arXiv:1904.05442 pages. arXiv:cs.AR/1904.05442

https://doi.org/10.1007/s10703-011-0135-z
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://github.com/ucb-bar/riscv-torture
https://github.com/ucb-bar/riscv-torture
https://opencores.org/projects/sd_card_controller
https://opencores.org/projects/sd_card_controller
https://github.com/alexforencich/verilog-ethernet
https://github.com/alexforencich/verilog-ethernet
https://doi.org/10.1145/2830772.2830832
https://github.com/google/riscv-dv
http://arxiv.org/abs/1811.08091
http://arxiv.org/abs/1811.08091
https://doi.org/10.1145/3289602.3293958
https://doi.org/10.1145/3289602.3293958
https://github.com/lowRISC/ariane-ethernet
https://github.com/lowRISC/ariane-ethernet
https://www.oracle.com/technetwork/systems/opensparc/t1-01-opensparct1-micro-arch-1538959.html
https://www.oracle.com/technetwork/systems/opensparc/t1-01-opensparct1-micro-arch-1538959.html
https://github.com/PrincetonUniversity/openpiton
https://github.com/PrincetonUniversity/openpiton
https://github.com/riscv/riscv-debug-spec/releases/download/task_group_vote/riscv-debug-draft.pdf
https://github.com/riscv/riscv-debug-spec/releases/download/task_group_vote/riscv-debug-draft.pdf
https://github.com/riscv/riscv-tests
http://arxiv.org/abs/cs.AR/1904.05442

	Abstract
	1 Introduction
	2 Architecture
	2.1 RISC-V Core
	2.2 Cache Subsystem
	2.3 Support for RISC-V Atomic Operations
	2.4 Platform Peripherals
	2.5 Automatic Device Tree Generation

	3 Simulation & Emulation Platforms
	3.1 FPGA Flows
	3.2 ASIC Flows

	4 Roadmap
	4.1 Software and Testing
	4.2 Hardware

	5 Conclusion
	References

