
IEEE Floating-Point Extension for Containing Error in the
RISC-V Architecture

Alex Underwood, Tuan Nguyen and James E. Stine∗∗
alexander.underwood,james.stine@okstate.edu

Oklahoma State University, VLSI Computer Architecture Research Group
Stillwater, Oklahoma, USA

ABSTRACT
This article discusses modifications to IEEE 754 floating-point units
to help researchers and scientists monitor and control errors in
scientific applications. To accomplish this, support is added to the
RISC-V simulation environment through gem5 architecture sim-
ulator to give the ability to identify possible elements lost during
rounding. The use of the SoftFloat arithmetic validation suite is uti-
lized and added to gem5. Simulation results are presented indicating
good performance and the ability to monitor arbitrary precision.
Results are also given on implementation in System on Chip designs
using the Global Foundries cmos32soi technology along with ARM
standard-cells. The results indicate an approximately 5% increase
in area with less than 3% increase in energy over traditional IEEE
754 floating-point multipliers.

CCS CONCEPTS
• Mathematics of computing → Arbitrary-precision arith-
metic; • Hardware→ Arithmetic and datapath circuits.

KEYWORDS
IEEE 754 arithmetic, RISC-V floating-point, validated arithmetic

ACM Reference Format:
Alex Underwood, Tuan Nguyen and James E. Stine. 2019. IEEE Floating-
Point Extension for Containing Error in the RISC-V Architecture. In CARRV
’19: Third Workshop on Computer Architecture Research with RISC-V, June 22,
2019, Phoenix, AZ. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
Multiplication has long been an important part in most computer
architectures and it has usually been utilized as a common case
and as an architecture decision to include in any microarchitec-
ture. However, the difficulty in creating hardware for multiplication
because of its inherent shifting of the radix point has been a co-
gent reason for the need for floating-point hardware in scientific
applications. To aid common usage for floating-point in computer

∗All authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CARRV ’19, June 22, 2019, Phoenix, AZ
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

architectures, the IEEE standardized floating-point in 1985 [1] and
later re-ratified subsequently in 2008 [2] with the IEEE 754.

Although IEEE 754 floating-point implementations has made
tremendous progress in making computations simpler and concise,
it has an inherent problem within its structure. Since the dynamic
range is much larger than normal integer and fractional implemen-
tations, it loses information when numbers are rounded to their
final result. The IEEE 754 standard, by default, rounds floating-point
numbers using round-to-nearest even or RNE and has a total of four
rounding modes to help contain error. Good hardware for rounding
in floating-point arithmetic is key to expanding algorithms, numer-
ical methods, and applications that exploit techniques to control
validation due to loss of precision.

In addition, correct rounding of both normal and denormal re-
sults further exacerbates the growing complexity of an IEEE 754
multiplier. Due to the importance of high precision in scientific
applications [9], the precision must be preserved. Simply truncating
denormal results to zero is unacceptable [13]. Consequently, having
floating-point units that can handle normalized and denormalized
numbers is essential, especially for scientific computing [14].

While most general-purpose CPU/GPU use double-precision
floating point units, in deep learning, single-precision floating-point
is widely used as the default format because its advantage in repre-
sentable range makes it suitable for a wide range of applications [2].
However, recent research [5] shows that, in many applications,
single-precision floating-point multipliers can be replaced by half
precision floating-point multipliers in training deep neural net-
works, which have little to no impact on the network accuracy.
Therefore, there is a need for a new multipliers that can switch
between precision numbers in implementing deep learning [6].
Moreover, it is important that the ability to do computations with
larger precisions as well as monitor how much error computations
exhibit.

To overcome the numerical limitations of existing computer
systems, several software tools and hardware designs have been
developed [24]. Each of these tools or hardware designs use addi-
tional code or digital logic to extend the precision of floating-point
arithmetic or improve the ability to monitor numerical errors. Al-
though these methods are useful, many of these implementations
impose lengthy cycle times or additional hardware that complicates
their usage. This paper discusses a method that does not incur ex-
tra delays and uses an extension to the method called native-pair
computations [8] to the RISC-V architecture. Moreover, this paper
also discusses architectural changes as well as simulation with the
gem5 architectural simulator [20].

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CARRV ’19, June 22, 2019, Phoenix, AZ Underwood, Nguyen, and Stine

2 BACKGROUND
The expansion of hardware to allow an increased amount of preci-
sion or more accurate results is important for scientific computing.
Although IEEE 754 floating-point arithmetic is powerful, it can con-
sume a large amount of hardware as well as have an impact upon
performance and cycle time. Over the years there has been many
attempts to leverage hardware against simplicity yet still maintain
good performance.

One class of designs involves the computation of accurate dot
products. Accurate dot product coprocessors produce dot products
that are mathematically exact, but have a single rounding at the
end. The ability to allow floating-point numbers to be accumulated
without roundoff error is accomplished using a long fixed-point
accumulator. A long fixed-point accumulator (LA) that ensures
exact accumulation requires

L = д + 2 · Emax + 2 · |Emin | + 2 · l + 1

digits, where the input floating-point format in terms of the base
numbers have a mantissa of length l and exponent range from
Emin to Emax . The д additional bits, called guard bits, are used
for catching intermediate overflows. After the accumulation, the
exact dot product in the LA is rounded once to the desired floating-
point format using one of the four rounding modes specified by the
IEEE-754 standard [1].

Dot product coprocessors use memory to load and store the
accumulator, a barrel shifter to find the correct point to add new
numbers to the accumulator, and an adder or subtractor. Designs are
presented in [4], [15], and an overview of accurate vector arithmetic
units is given in [3]. In addition, [15] presents carry-skip logic to
determine if a carry-chain can be bypassed in the accumulator,
based on a solution previously implemented in software [16]. A
two-bit wide register is attached to each accumulator word, where
one bit indicates all digits of the corresponding LA word are zero,
and the other bit indicates all digits are (b − 1). The carry skips
over word boundaries based on this two-bit flag. Unfortunately, LA
and other validated-arithmetic implementations require additional
software support and can easily complicate hardware arithmetic
units.

The IEEE 754 floating-point standard, originally ratified in 1985 [1]
and later amended in 2008 [2], defines the floating-point format
that consists of three parts: sign (S), exponent (E), mantissa or
significand (M). Figure 1 shows four IEEE 754 formats including
half-precision, single-precision, double-precision and quadruple-
precision formats. IEEE 754 floating-point arithmetic provides a
modest increase in hardware to allow users to support increased
precision that cannot be easily handled through integer arithmetic.
Floating-point support within the RISC-V architecture is handled
through the “F”, “D”, and “Q” standard extension for single, double,
and quadruple precision, respectively.

Figure 2 shows a block diagram detailing the overall architecture.
The design consists of several stages: unpack (hidden bit and other
exception and bit testing), sign, exponent and mantissa logic blocks
and final result packing. As per the IEEE 754 standard, five flags
are produced: Infinite or Divide by 0 (I), Inexact (X), Invalid (V),
Overflow (O) and Underflow (U). Some flags, such as Divide by
0, are not appropriate for floating-point multiplication as it is not
possible.

31 30 2223

09101415

F[9:0]E[4:0]S

S E[7:0] F[22:0]

Single−Precision (bin32)

Half−Precision (bin16)

Double Precision (bin64)

E[10:0]S F[51:0]

516263 0

0

111112126127

S E[14:0] F[111:0]

Quad−Precision (bin128)

0

52

Figure 1: Data formats for the IEEE 754-2008 floating-point

Normalization
Round

Addition
Exponent

Packing/Exceptions

Unpack/Check Inputs

XOR

Multiplier

Exponent

Update

UOVXI

SX EX SY EY

SX SY EX EY

SZ EZ MZ

ovf

SZ EZ MZ

EX + EY − Bias

MX MY

MX MY

Figure 2: Block diagram of IEEE 754 multiplier architecture

As stated previously, although IEEE 754 arithmetic is now stan-
dardized and commonplace inmost general-purpose and application-
specific processors, it does suffer from loss of information due to
rounding the final result to its IEEE 754 representation. This error,
although small, can possibly compromise applications where error
places an important element in its use (e.g., conversion between
integers and IEEE 754 arithmetic). Therefore, the need for architec-
tures to be able to analyze error is important for high-performance
computing and their applications.

A more pragmatic solution to this problem is utilizing something
called native-pair arithmetic [8]. A pair of native floating-point is
used to represent a base result and a residual term to increase ac-
curacy is also computed. The original idea [8] adds a few simple
microarchitectural features so that acceptable accuracy can be ob-
tained with a relatively little performance penalty. To reduce the
cost of native-pair arithmetic, a residual register is used to hold
information that would normally have been discarded after each
floating-point computation.

The main idea here is to balance hardware and software by
providing a sequence of numbers that can be used for arbitrary
precision [21]. In theory, this can possibly allow a group of several
numbers to approximately double the amount of precision for a
computation without having to add additional hardware [7]. As
pointed out in [8], native-pair arithmetic or sometimes called double-
double when used with IEEE 754 double-precision floating-point
numbers is that it can take up to ten or more native operations for
each native pair operation.

IEEE Floating-Point Extension for Containing Error in the RISC-V Architecture CARRV ’19, June 22, 2019, Phoenix, AZ

AS AE AM

CS CE CM

n
m

BS BE BM

CF RS RE RM

MOVRR round

complement

packing/multiplication

Rounder/Exception

ExpAdj

Figure 3: Previously Proposed Architecture for Residual
Register in IEEE 754 Floating-Point Multiplier [8]

To accomplish this task, a residual register [8] is suggested that
takes in the discarded values saved by the IEEE 754 floating-point
units (FPUs). This residual register stores unnormalized results, but
utilizes the same IEEE 754 floating-point hardware that exists for
computing the residual register. After computation, a new instruc-
tion is added to the Instruction Set Architecture (ISA) to handle
moving it into the register file. The overall architecture looks like
the architecture in Figure 3. The residual register is a floating-point
register with a sign bit, ne exponent bits, nm +2 mantissa bits, and a
complement flag bit, where ne and nm are the number of exponent
and mantissa bits in a native floating-point number, respectively,
not including the leading one bit in the mantissa implied by the
IEEE 754 format [8]. Programs that do not use the residual register
get the usual result defined by the IEEE 754 standard. Most impor-
tantly, results stored in the residual register (prefixed by R) can be
used to speed up extended-precision floating-point algorithms by
replacing sequences of instructions that compute equivalent results
with a single residual register access [8].

The architecture allows a good compromise between complex-
ity and architecture needs. The MOVRR reg, K instruction in the
ISA allows the compiler to easily control scheduling and possibly
remove any hazards when multiplier instructions produce residual
results [8]. Although the design in Figure 3 shows the change for
IEEE 754 multiplication, the original idea in [8] can be applied to
other IEEE 754 floating-point operations, as well.

The difficulty in rounding is due to the 754 standard’s format for
the mantissa being in the correct range. This typically means that
logic has to check whether the 106-bit product (i.e., P[105:0]) of the
multiplication for the correct values of l , д, and t . This means that if
v = 0 (no overflow), l = P[52], д = P[51] and t is the logical OR of
P[50:0], however, if v = 1 (overflow), l = P[53], д = P[52] and t is
the logical OR of P[51:0]. The rounding bit r is then added to the
least-significant bit (LSB) (which is P[52] if there is no overflow
and is P[53] if overflow) by a 54-bit carry-propagate adder (CPA).

Multiplication is basically adding the multiplicand multiple times
based on values of the multiplier [19]. To speed this process up,
parallel multipliers, typically found in IEEE 754 multipliers, use a
carry-save format so that it can avoid the slow 106-bit CPA until
later in the process [9]. This carry-save format allows the product
to be computed optimally by paralleling the addition of each partial

product. Consequently, the mantissa multiplication within IEEE
754 multipliers generates the partial products and then reduces it
to a carry-save format that includes 106-bit carry C[105:0] and a
106-bit sum S[105:0] vectors.

3 NATIVE-PAIR IMPLEMENTATION
Due to the multiplier presenting its product in carry-save format
to the rounder, it is difficult to determine if there is an overflow
(i.e., P >= 2) [23]. In order to help optimize the hardware, parallel
additions are performed and additional logic is utilized to deter-
mine which additions are utilized for the final product. These par-
allel additions are combined together to form one adder, typically
called a compound adder (CA). Compound adders take advantage
of utilizing redundant hardware and its use is critical in optimizing
hardware for any implementation [9]. Normally, compound adders
use the same hardware except for critical components, such as the
carry-chain logic [23].

RN is arguably the most complicated mode compared to RZ
and RI modes. The method within [23] smartly designs for round-
to-nearest/up (RNU) mode (roundTiesToAway mode in IEEE 754
standard) and then modifies the design to produce RN mode. The
RNUmode utilizes RNmode except in the case of a tie (x .rem = 0.5)
where the RNUmode always rounds up. In terms of implementation,
RNU can be implemented by simply adding a 1 to the guard bit (д)
position. This introduced error, although small, can build over time
and eventually cause problems [24].

Native-pair computations can be utilized to essentially build on
top of current operations to create multi-precision computations [7,
12]. Essentially, for multiplication this is done as a straightforward
multiplication followed by accumulation of the results. Luckily,
this process does not have problems associated with catastrophic
cancellation or the subtracting of two closely related values [12].
Accumulation can be sped up by having architectures that have
fused-multiply and add (FMA) or sometimes called multiply and
accumulate (MAC) units, however, most common ISAs do not have
this instruction. For multiplication, the most important operation
is guaranteeing that no significant digits are lost when the product
of two components is computed with its limited precision [21].

As specified in [7], using multiple components and splitting
their computations and accumulating them later is called native-
pair floating-point computations in this paper, similar to [8]. It is
argued in this paper that simpler architectural changes are needed
that do not strangle other operations or make the common case
fast. Although it is conceivable to perform this operation for any
floating-point computation, this work makes the argument that
this architecture modification can be done if a user wants to ex-
amine more information about a given floating-point computation.
Granted, this operation, would consumed more execution time than
a normal non-native-pair floating-point program, however, the abil-
ity to save the extra bits of precision by the floating-point unit can
be significant in power to a user who might be concerned with
very small or large numbers or, worse, possible loss in precision.
Therefore, using the native-pair computations, as suggested by [8],
is a good trade-off between complexity and simplicity.

Whatmakes thismodification challenging is the post-normalization
step or the rounded product needs to be normalized (divided by

CARRV ’19, June 22, 2019, Phoenix, AZ Underwood, Nguyen, and Stine

50 051

Row of 53 HAs

1

SL

(53) Compound Adder

0G0G

2G

3G 4G

6G

20G21G

20G

24G

13G 16G 13G

24G

27G

18G 17G

19G

19G

27G

19G

21G20G

18G

24G24G23G

22G

53 52105 104 103

FA

Shifter Shifter

01

prediction

StickyCarry, Guard

Select

Result

fixL
(v=0)

fixL
(v=1)

10

0 1

0 1 0 1

MZ [0]
MZ [52 : 1]

P1[52]
P1[52:0] P0[52:0]

P0[52]

MZ

P0[52]

RN,RI,RZ

lpcpXS[52:0] XC[52:1]

XC
XS

SH
CH CL

SH[53:1] CH[53:1] RN,RI

p
rs rc

CL[50:0]SL[50:0]

tдc

f 0 f 1
P1[0]P0[0]

mux
sel0novf

P0[52] P1[52]
mux mux

mux

sel1

(53) mux

SumSum+1

RN

RN

Figure 4: Rounding architecture for all IEEE 754 rounding
modes (Adapted from [18])

2) for the mantissa domain [1, 2) by a right shift if it is equal to
or larger than 2. The current implementation in [8] does not use
current architectures that well known for IEEE 754 floating-point
architectures [10, 22, 23]. This research has shown good architec-
tures to optimize one of the main delay issues within IEEE 754
multiplication, the rounder. Recent research [17, 18] has given fur-
ther optimizations into this critical part by analyzing each design.
This optimized rounder can be seen in Figure 4.

Figure 4 shows an optimized rounder unit that starts with inputs
from the 106-bit carry-save output (i.e., CL[105:0] and SL[105:0])
from the multiplication unit. The upper 54 most-significant bits
from or SH, CH and the 52 least-significant bits for SL, CL (PL =
SL +CL), respectively, are separated to speed up the critical path
within this unit. The left-hand portion of the block in Figure 4
utilizes a row of 53 HAs to add SH and CH (except the LSBs) and one
FA to add the prediction bit p and two LSBs of SH, CH. The sum bit
lp is used to compute the correct LSB of final product on the right
while the carry bit cp is added into the LSB of the carry vector XC
on the left. A 53 bit compound adder is then used to pre-compute
two possible outputs P0, P1 [18]. Both P0 and P1 are normalized
before the final selection logic. On the right side of Figure 4, the
carry c, guard g, and sticky t bits are computed based on SL and CL
bits [18]. Based on the last bit of lp and c, g, t bits and the overflow
bit v0 = P0[52], the Select Result module generates sel1 and
sel0 signals to select the correct output from the CA based on the
correct value of INC.

In Figure 4 annotated linear-delay numbers to give a theoretical
idea of the delay encountered by this unit. Linear-delay analysis
is a useful technique to analyze Boolean logic [9]. Typically, a set
amount of delay is universally set for each gate within a module and
each implementation uses only those gates in the library to perform
a comparison. This way, a design can be compared individually and
without bias. In this figure, delays are annotated with the letter
G to signify “gate delays” as an arbitrary delay unit. As seen in
Figure 4, the normalization signal, sel1 set by the Select Result
unit, consumes 24G delays. This signifies that the logic in Figure 3

AS AE AM

CS CE CM

n
m

RS RE RM

BS BE BM

MOVRR

packing/multiplication

Rounder/Exception Rounder Residual

Figure 5: Proposed Architecture for Residual Register in
IEEE 754 Floating-Point Multiplier

requires a significant amount of delay before the residual register
can be computed. As seen in Figure 4, once the sel1 signal is
asserted or de-asserted, it would require an additional 27G to be
re-introduced through the rounder unit before even producing
an answer in Figure 3. Unfortunately, this would be prohibitive
for most high-performance computing applications and a better
solution is needed.

One potential solution is to replicate the rounder unit within the
IEEE 754 multiplication unit. The secondary rounder is utilized to
separately compute the residual value. This architecture has the
advantage in not having to wait for the normalization signal. The
MOVRR control signal is still needed to signal the final result to select
the residual register through a multiplexor (not shown in Figure 5)
as an output instead of a normalized IEEE 754 floating-point result.
Theoretically, this unit could also supply this information as an
additional output, however, this would require additional infras-
tructure within the microarchitecture to handle additional outputs
from IEEE 754 FPUs.

To provide and example of how this implementation works, an
example is given for native-pair multiplication based on the work
in [21]. C++ programs are written to prove that the production of
native-pair computations can provide precision much larger that
is needed if this extra information is available to a user. Therefore,
after a floating-point multiplication instruction is completed within
a system using a residual register, the value within that register can
be accessed and moved to a general purpose floating-point register
with the MOVRR instruction, similar to the instruction originally
proposed in [8].

For example, given two double precision floating-point values x
and y, the resulting product of the two along with using MOVRR to
recover the lost precision finishes with two registers that contain
the full product.
x = 4.000000000000001776356839400250 ...

4646778106689453125
= 0x4010_0000_0000_0002

y = 2.000000000000000444089209850062 ...
616169452667236328125

= 0x4000_0000_0000_0001

IEEE Floating-Point Extension for Containing Error in the RISC-V Architecture CARRV ’19, June 22, 2019, Phoenix, AZ

z = x * y
z[1] = 8.000000000000005329070518200 ...

7513940334320068359375
= 0x4020_0000_0000_0003

z[2] = 0.000000000000000000000000000 ...
00078886090522101180541172856 ...
52827862296732064351090230047 ...
702789306640625

= 0x39b0_0000_0000_0000

The result of multiplying the same two values x and y but with
quad precision gets the same product but with the entire answer in
a single register.
z = (quad) x * y
z = 8.000000000000005329070518200752 ...

18289433722784774291172856528278 ...
62296732064351090230047702789306 ...
640625

= 0x4002_0000_0000_0000_3000_0000_0000_0200

The solution using the residual register and MOVRR contains the same
numeric value, but the representation is split between two double
precision floating-point registers and thus can be used in systems
that do not have support for IEEE 754 quadruple precision at the
hardware level. Even though RISC-V has quadruple-precision sup-
port, this technique can be utilized for larger precisions, if needed.
Existing IEEE 754 floating-point implementations remove or erase
this extra information within most floating-point units (FPUs), thus,
this modification provides good support for those pursuing areas
of accuracy within a given amount of precision.

As documented in [24], there are many numerical packages that
can examine extra information about a specific computation. In addi-
tion, existing GNU repositories utilize libraries for possible multiple-
precision floating-point computation (e.g., GNU MPFR). On the
other hand, all of these software tools consume large amounts of
execution time and do not utilize hardware to help alleviate exe-
cution times. It is suggested within this work that utilizing more
information within FPUs can help optimize and examine numerical
issues that exist with computer arithmetic computations.

To demonstrate the effects the residual register has on runtime
performance, a modified version of the RISC-V instruction set ar-
chitecture that contained the new register was used in the gem5
simulator. This particular RISC-V setup used the RV64I base as well
as the G subset of extensions. The simulator is set up in system call
emulation mode, allowing for benchmarks and example programs
to be run without setting up an operating system. Typical setup
values utilized within gem5 are shown in Table 2. For benchmark-
ing, a series of SPEC benchmarks that emphasized floating-point
instructions are used to gauge system performance with the new
register in place. A total of six SPEC benchmarks are used from
both the 2006 and the 2017 edition of SPEC CPU benchmarks, as
shown in Table 1.

The system model in gem5 uses an out-of-order CPU with one
processor. Each benchmark was run single-threaded on their own
instance and had 64kB of L1 instruction cache and 32Kb of L1 data
cache. Each instance was given 16GB of simulated memory simu-
lating DDR4 2400MHz timing and performance. Only one memory

channel was used for these particular benchmarks. In order to
simulate floating-point performance within the gem5 simulation,
proven floating-point software routines are added to the gem5 sim-
ulator. These routines, called SoftFloat [11], are routines utilized
for testing floating-point implementations as well as testing them
against hardware. SoftFloat is efficiently written in C and can
be integrated within the gem5 simulator. The SoftFloat routines
are based on routines originally devised within the PARANOIA
program written by W. Kahan [14]. An additional instruction is
also integrated, MOVRR, to allow extra information to be presented
to a user, if needed. Although the SPEC CPU benchmarks do not
employ this extra instruction, the idea is that this capability can be
employed to examine specific precision. Simulations through gem5
indicate no foreseeable negative consequence to a simulation other
than adding an additional instruction through the Instruction Set
Architecture (ISA).

As seen by the results in Table 1, demanding floating-point com-
putations can be a significant amount of a program’s execution time.
Moreover, any additional program that uses accurate, self-validating
arithmetic potentially could consume much more execution time as
it utilizes libraries that are typically slower and have high amounts
of overhead. For example, specific software packages that employ
computations, such as interval arithmetic, typically use directed
roundings or round-to-positive and negative infinity. These directed
roundings, although part of the IEEE 754 standard [1, 2], typically
are controlled by the Floating-Point Status and Control Register
within the RISC-V architecture. And, if any changes are required
during a complicated floating-point pipeline, many architectures
flush the pipeline to avoid issues with complicated changes in the
rounding mode.

The modifications provided in this work do not incur any ex-
tra modifications other than more area within the FPU. Synthesis
was performed on the two IEEE 754 multiplier designs, one with
MOVRR support, and one traditional. Results were obtained with the
cmos32soi 32nm technology using ARM standard-cells and synthe-
sis was performed using topographical synthesis. Topographical
synthesis, provided by Synopsys® DC™ (DC) ensures synthesis that
accurately predicts timing, area and power by including informa-
tion from the standard-cell layouts and underlying interconnect.
Results indicate a 6.48% (17.755 mm2 traditional vs. 18.907 mm2

with MOVRR) increase in area with no delay addition. The energy
consumption also increases due to more area utilized for the ar-
chitecture modification. The average power estimation is achieved
by running the simulation with over 46, 464 random test vectors
generated by TestFloat [11] utilizing an annotated Value Change
Dump (VCD) and subsequently converted to a Switching Active
Interchange Format (SAIF) for analysis through DC topographical.
Results indicate a 2.32% increase in energy (30.59 mW traditional
vs 31.30 mW with MOVRR).

4 CONCLUSION
This work demonstrates work with the RISC-V architecture to aid
in controlling accuracy and precision within IEEE 754 floating-
point units. The architecture is designed to achieve small additions
to floating-point instructions with a new instruction within the
ISA. An additional floating-point validation mechanism is inserted

CARRV ’19, June 22, 2019, Phoenix, AZ Underwood, Nguyen, and Stine

SPEC CPU Benchmark 444.namd 470.lbm 508.namd_r 519.lbm_r 619.lbm_s 644.nab_s
Runtime Information

Simulated Seconds 17.55132 10.259652 10.034215 1482.954635 75.938858 2.635289
Real Seconds Elapsed 101470.81 28745.83 67628.68 4778013.15 220672.45 17830.05
of Simulated Cycles 35102640085 20519304925 20068429170 2965909270356 151877716470 5270577837
Function Frequency
Total Function Calls 47413825438 6610717022 34198662665 1595256157701 52256329490 8446078443

FloatADD 5917003819 2273240080 3743658184 541500665712 15594087856 990094464
FloatMULT 4414971460 1273446080 3294084157 326750716512 9024897856 1192676971

% of Runtime
FloatADD 12.48% 34.39% 10.95% 33.94% 29.84% 11.72%
FloatMULT 9.31% 19.26% 9.63% 20.48% 17.27% 14.12%

Table 1: Results of RISC-V gem5 simulations

CPU Architecture RISC-V
CPU Type DerivO3CPU

L1d Cache Size 64kB
L1i Cache Size 32kB
Memory Type DDR4_2400_8x8
Memory Size 16GB

Memory Channels 1
Table 2: gem5 Simulation Specifications

within gem5 utilizing the SoftFloat software library. This new ad-
dition to the gem5 simulator allows easy simulation of correct IEEE
754 floating-point arithmetic. It is anticipated that this new addition
along with modifications to the gem5 with SoftFloat will be avail-
able for download to users at the workshop. The new addition of
this software library can allow changes to IEEE 754 floating-point
arithmetic and allow designers to test new architectures that might
affect precision, such as with machine-learning.

REFERENCES
[1] 1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985

(1985), 1–14. https://doi.org/10.1109/IEEESTD.1985.82928
[2] 2008. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008 (Aug 2008),

1–70. https://doi.org/10.1109/IEEESTD.2008.4610935
[3] G. Bohlender. 1990. What Do We Need Beyond IEEE Arithmetic? In Computer

Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (Ed.). Academic
Press, 1–32.

[4] P. R. Capello and W. L. Miranker. 1988. Systolic super summation. IEEE Trans.
Comput. 37, 6 (June 1988), 657–677. https://doi.org/10.1109/12.2205

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Low
precision arithmetic for deep learning. CoRR abs/1412.7024 (2014). http:
//arxiv.org/abs/1412.7024

[6] J. Dean, D. Patterson, and C. Young. 2018. A New Golden Age in Computer
Architecture: Empowering the Machine-Learning Revolution. IEEE Micro 38, 2
(Mar 2018), 21–29. https://doi.org/10.1109/MM.2018.112130030

[7] T. Dekker. 1971. A Floating-Point Technique for Extending the Available Precision.
Numer. Math. 18 (1971), 224–242.

[8] W. R. Dieter, A. Kaveti, and H. G. Dietz. 2007. Low-Cost Microarchitectural
Support for Improved Floating-Point Accuracy. IEEE Computer Architecture
Letters 6, 1 (Jan 2007), 13–16. https://doi.org/10.1109/L-CA.2007.1

[9] Milo D. Ercegovac and Tomas Lang. 2003. Digital Arithmetic (1st ed.). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[10] Guy Even and P-M Seidel. 2000. A comparison of three rounding algorithms for
IEEE floating-point multiplication. IEEE Trans. Comput. 49, 7 (2000), 638–650.

[11] J. Hauser. 2018. The SoftFloat and TestFloat Validation Suite for Binary Floating-
Point Arithmetic. Technical Report. University of California, Berkeley. Available
at http://www.jhauser.us/arithmetic/TestFloat.html.

[12] Y. Hida, X. S. Li, and D. H. Bailey. 2001. Algorithms for quad-double preci-
sion floating point arithmetic. In Proceedings 15th IEEE Symposium on Computer
Arithmetic. ARITH-15 2001. 155–162. https://doi.org/10.1109/ARITH.2001.930115

[13] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (second
ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9780898718027 arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9780898718027

[14] W. Kahan. 1996. Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic. Technical Report. University of California, Berkeley.
Available at http://www.cs.berkeley.edu/˜ wkahan.

[15] A. Knofel. 1991. Fast hardware units for the computation of accurate dot products.
In [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. 70–74. https:
//doi.org/10.1109/ARITH.1991.145536

[16] M. Muller, C. Rub, and W. Rulling. 1991. Exact accumulation of floating-point
numbers. In [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.
64–69. https://doi.org/10.1109/ARITH.1991.145535

[17] T. D. Nguyen, S. Bui, and J. E. Stine. 2018. Clarifications and Optimizations
on Rounding for IEEE-compliant Floating-Point Multiplication. In 2018 IEEE
29th International Conference on Application-specific Systems, Architectures and
Processors (ASAP). 1–8. https://doi.org/10.1109/ASAP.2018.8445092

[18] T. D. Nguyen, S. R. Thompson, and J. E. Stine. 2018. Architectural Improvements
in IEEE-compliant Floating-Point Multiplication. submitted to IEEE Transactions
on Computers (2018).

[19] David A. Patterson and John L. Hennessy. 2016. Computer Organization and
Design: The Hardware Software Interface ARM Edition (1st ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[20] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. 2015. gem5-gpu: A
Heterogeneous CPU-GPU Simulator. IEEE Computer Architecture Letters 14, 1
(Jan 2015), 34–36. https://doi.org/10.1109/LCA.2014.2299539

[21] D. M. Priest. 1991. Algorithms for arbitrary precision floating point arithmetic.
In [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic. 132–143.
https://doi.org/10.1109/ARITH.1991.145549

[22] Nhon T Quach, Naofumi Takagi, and Michael J Flynn. 2004. Systematic IEEE
rounding method for high-speed floating-point multipliers. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 12, 5 (2004), 511–521.

[23] M. R. Santoro, G. Bewick, and M. A. Horowitz. 1989. Rounding algorithms
for IEEE multipliers. In Proceedings of 9th Symposium on Computer Arithmetic.
176–183. https://doi.org/10.1109/ARITH.1989.72824

[24] M. J. Schulte and E. E. Swartzlander, Jr. 1996. Software and Hardware Techniques
for Accurate, Self-Validating Arithmetic. Kluwer Academic Publishers. 381–404
pages.

https://doi.org/10.1109/IEEESTD.1985.82928
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/12.2205
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
https://doi.org/10.1109/MM.2018.112130030
https://doi.org/10.1109/L-CA.2007.1
https://doi.org/10.1109/ARITH.2001.930115
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9780898718027
https://doi.org/10.1109/ARITH.1991.145536
https://doi.org/10.1109/ARITH.1991.145536
https://doi.org/10.1109/ARITH.1991.145535
https://doi.org/10.1109/ASAP.2018.8445092
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/ARITH.1991.145549
https://doi.org/10.1109/ARITH.1989.72824

	Abstract
	1 Introduction
	2 Background
	3 Native-pair Implementation
	4 Conclusion
	References

