
Vortex RISC-V GPGPU System: Extending the ISA, Synthesizing
the Microarchitecture, and Modeling the Soware Stack
Fares Elsabbagh

Georgia Institute of

Technology

Atlanta, Georgia

fsabbagh@gatech.edu

Bahar Asgari

Georgia Institute of

Technology

Atlanta, Georgia

bahar.asgari@gatech.edu

Hyesoon Kim

Georgia Institute of

Technology

Atlanta, Georgia

hyesoon@cc.gatech.edu

Sudhakar Yalamanchili

Georgia Institute of

Technology

Atlanta, Georgia

sudha@gatech.edu

ABSTRACT
The open-source RISC-V instruction set architecture (ISA) has en-

abled computer architects to propose several innovative processors

for a wide range of applications. One of the domains of processor de-

sign that can take advantage from RISC-V, but has not seen enough

attention, is general-purpose GPU (GPGPU) design. To support the

development of open source GPGPU system, we present Vortex,

our solution for building single instruction, multiple thread (SIMT)

execution using RISC-V. In addition to a synthesizable microarchi-

tecture model, we propose a GPU ISA extension to RISC-V and

a software model, in the form of a runtime kernel, which makes

Vortex practical and easy to integrate. As a result, Vortex does not

require any modications to the current RISC-V compilers.

ACM Reference Format:
Fares Elsabbagh, Bahar Asgari, Hyesoon Kim, and Sudhakar Yalamanchili.

2019. Vortex RISC-V GPGPU System: Extending the ISA, Synthesizing the

Microarchitecture, and Modeling the Software Stack. In Proceedings of Third
Workshop on Computer Architecture Research with RISC-V (CARRV 2019). ,
6 pages.

1 INTRODUCTION
The advent of RISC-V [1, 11, 12], the open-source and free instruc-

tion set architecture (ISA), has delivered a new level of freedom

in designing hardware architectures. In this new era, computer

architects have designed several innovative processors and cores

such as BOOM v1 and BOOM v2 [2] out-of-order cores, as well as

system-on-chip (SoC) platforms for a wide range of applications.

For instance, Gautschi et al. [5] have extended RISC-V to digital

signal processing (DSP) for scalable Internet-of-things (IoT) devices.

Moreover, vector processors [13] and processors integrated with

vector accelerators [9] have been designed and fabricated based

on RISC-V. In spite of the advantages of the preceding studies, not

enough attention has been devoted to building an open-source

general-purpose GPU (GPGPU) system based on RISC-V. Although

a couple of recent work have proposed an FPGA accelerator for

massively parallel computations (GRVI Phalanx) [6], and a general-

ized single instruction, multiple thread (SIMT) execution on RISC-V

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specic permission and/or a

fee. Request permissions from permissions@acm.org.

CARRV 2019, June 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).

(Simty) [3], none of them have implemented the full-stack by ex-

tending the RISC-V ISA, synthesizing the microarchitecture, and

modeling the software. We believe that such an implementation is

in fact necessary to achieve the level of usability and customizability

in massively parallel platforms.

This paper proposes Vortex, a RISC-V GPGPU system, which

comprises three main components:

• ISA extension:We extend the RISC-V ISA to control warps

and threads, and to handle control divergence. We designed

the ISA to reduce the microarchitecture and software design

complexity without sacricing functionality or exibility.

(see Section 3).

• Microarchitecture implementation:We implement a syn-

thesizable GPGPU model that is highly customizeable and

lightweight (see Section 4).

• Software model:We implement the software stack, includ-

ing a runtime kernel, that supports a standalone GPGPU

(i.e., host and the kernel are all executed from the same main

thread) and a matrix library, to abstract the hardware and

provide useability, extensibility, and exibility (see Section 5).

In this paper, besides synthesizing the model and verifying the

functionality, we examine the performance of multi-thread applica-

tions and the impact of the number of hardware warps and hard-

ware threads on the overall performance. We run a matrix-matrix

multiplication benchmark on various congurations to test perfor-

mance and synthesize the model on an Intel
®
Arria

®
10 FPGA to

examine the cost.

2 TERMINOLOGY
In a SIMT execution model, a group of threads that share a program

counter (PC) are grouped in a hardware warp. The threads inside a

warp are implemented as single instruction, multiple data (SIMD)

lanes. A software warp is the lowest granularity of tasks that can be

scheduled by the software. In the software level, a runtime kernel

runs closest to the hardware and schedules software warps and

contexts (contexts is analogous to a CPU process) onto hardware

warps to run GPU kernels. A software warp is allocated and sched-

uled by the runtime kernel and executes like a one-dimensional

CUDA block.

3 ISA EXTENSION
This section describes our proposed ISA extension that enables

building SIMT using RISC-V. To accomplish the desired behaviour,

we introduce ve new instructions, listed in Table 1, and a thread

mask register, to the RISC-V ISA, which were inspired by HAPR



ISA [8]. The proposed ve new instructions are R-Type instruc-

tions and t in one opcode. These instructions are intended to be

the minimal set of instructions to introduce SIMT functionality to

an architecture. They are designed to address the three new con-

cepts that SIMT introduces: hardware warps, hardware threads,

and control divergence.

3.1 Warp Control
The wspawn instruction is intended to address the introduction

of hardware warps to the architecture; The instruction sends a

signal to the architecture to spawn or wake up a hardware warp

at a specic PC value with only thread 0 activated. wspawn also

copies the value of the %src register from the executing warp to

the %dest register of the new warp that’s being spawned. If there

are no available hardware warps to be spawned, an exception will

be thrown.

In addition, to halt the execution of an active hardware warp

we utilize the EBREAK instruction [11] which sends a signal to

the architecture to stop the execution of the current warp. In our

implementation, the original intended use of EBREAK, causing
control to be transferred back to a debugging environment, applies

when there’s only one active warp remaining.

wspawn %dst, %PC, %src

3.2 Thread Control
We propose clone and tmc instructions to address the introduction

of SIMD lanes. tmc instruction activates and deactivates lanes by

controlling the thread mask register for the executing warp. The

thread mask register could be read as a Control and Status register

(CSR) and contains a bit for each thread singnifying whether the

thread is currently active or not. For example, if %NumThreads is

equal to ve, then lanes zero to four will be activated and the ve

least signicant bits of the thread mask will be set to one. A more

complex control ow can be handled by the software as explained

in Section 5.3. clone instruction copies all of the general purpose

registers of thread zero to the general purpose registers of thread

%ThreadNum. If either %threadNum or %NumThreads is greater

than the number of available hardware threads, an exception will

be thrown.

clone %ThreadNum

tmc %NumThreads

3.3 Control Divergence
split and join instructions are used to handle control divergence.

Control divergence, which occurs when the threads in the same

hardware warp want to follow distinct execution paths, is handled

by a hardware immediate postdominator (IPDOM) stack [8]. The

%predicate is set by any of the 32 general-purpose registers and it is

considered true by the split instruction if there’s a non-zero value

stored in the register. split instruction pushes information about

the current state of the thread mask and the predication result for

all hardware threads into the IPDOM stack and join pops out of

the IPDOM stack (more details in Section 4.2). If a join is executed

without a corresponding split, an exception will be thrown.

split %predicate

join

Table 1: Our proposed SIMT ISA extension.

Instructions Description

wspawn Spawn a new warp.

clone Clone register state to a specic thread

tmc Change the thread mask to activate threads

split Control ow divergence

join Control ow reconvergence

4 MICROARCHITECTURE
IMPLEMENTATION

The aim of Vortex GPGPU is to make a lightweight GPGPU that is

highly customizable to target specic applications. Vortex GPGPU

is a 32-bit 5-stage pipeline that supports RISC-V’s integer and multi-

plication extensions (RV32IM) on top of the instructions mentioned

in Section 3. Compared to a basic RISC-V pipeline, Vortex has 1)

a hardware warp scheduler that contains the PC and thread mask

registers and an IPDOM stack for each hardware warp 2) a warp

context for each hardware warp that contains a set of register les

for each thread in a warp, and 3) a shared memory module, as

shown in shown in Figure 1. In addition, the execute stage has mul-

tiple execution units to parallelize execution of hardware threads

in a warp; However, the number of execution units does not have

to be equal to the number of hardware threads or lanes available.

Thus, the latency of the execute stage will depend on the number

of execution units in the conguration. Vortex supports a fully cus-

tomizable warp and threads per warp conguration, L1 cache, and

a banked shared memory module. An instruction being executed

by a warp is only fetched and decoded once, but executes on the

operands and destination registers for each hardware thread in a

warp.

4.1 Warps
The warp scheduler in Vortex is implemented as a ne-graine sched-

uler which is a lightweight scheduler that and hides the latency

for branches and jumps. It stores a state that keeps track of which

hardware warps are active and it supports the wspawn and ebreak
instructions described in Section 3. In addition, the execution is

optimized so that only the currently active warps are scheduled.

The rest of the warp state is stored in the warp context in the de-

code stage. The warp context contains the general purpose register

les for each thread and is responsible for supporting the clone and
wspawn instructions.

4.2 Control Divergence
One of the biggest challenges in SIMT processors is control diver-

gence which leaves the pipeline highly underutilized because of its

dynamic nature [4]. However, to maintain a simplistic approach,

a hardware IPDOM stack [8] is used to handle control divergence.

The IPDOM stack works by maintaining a private thread mask

register for each warp that stores a mask of the current running

threads. When a split instruction is reached, the current state of the

thread mask and the inverse of the new thread mask, along with

PC+4, are pushed onto the IPDOM stack. The next instruction con-

tinues with the new thread mask. When join instruction is reached,

2



Figure 1: Microarchitecture design of Vortex.

the stack is popped and the pipeline either jumps to the PC popped

from the stack, or falls through to the current PC+4.

4.3 Memory
Similar to Volta architecture, Vortex supports both an L1 data cache

and shared memory module [7]. The L1 cache implementation is

parameterizable by cache size, block size, and number of ways. To

maintain a lightweight design, only one memory access request

could be sent to the cache in one cycle; This indicates that a 32

threads per warp would take 32 cycles in the memory stage to

complete a memory access to the cache in case of a cache hit.

On the other end of the spectrum, the shared memory module

is extremely parallelizable. Each hardware thread has a one-cycle

access to a dierent bank. Vortex matrix library is optimized to

reduce bank conicts. The shared memory module is mapped to

addresses 0xFF000000 to (0xFF000000 + shared memory size). This

address space is interleaved for each bank by word; The word at

0xFF000000 is stored in bank 0, 0xFF000004 is stored at bank 1, ...

for a number of banks equal to the number of hardware threads in

the conguration.

5 SOFTWARE STACK
Vortex has both a runtime kernel and a matrix library, as shown

in Figure 2, which are designed to capitalize on the microarchitec-

ture implementation for the best performance. The Vortex runtime

kernel 1) supports a standalone GPGPU (i.e., host and the kernel

are all executed from the same main thread) 2) introduces concepts

such as software warps which could be scheduled and preempted,

similar to threads in CPU programming models, 3) provides basic

communication channels between software warps, 4) manages the

shared memory address space, and 5) provides synchronization

between software warps in the form of centralized barriers [10].

Another major benet of this software stack is that it does not re-

quire any changes to the RISC-V compilers as explained in Section

5.1.

The library is responsible for 1) copying data from hardware

cache to shared memory, 2) implementing GPU kernels for matrix

operations, and 3) optimizing requests to the kernel to call these

GPU kernels. A program running on Vortex could fully rely on the

library to enable parallelism in the application. In addition, there

is an interface that allows a program to implement its own GPU

kernel described in Section 5.2.

5.1 Vortex Runtime Kernel Implementation
To enable Vortex runtime kernel to utilize the new instructions

without modifying the existing compilers, we implemented the

runtime kernel as an intrinsic library. Thus, the critical sections of

the kernel are written in RISC-V assembly. In these critical sections,

the kernel spawns new hardware warps, saves and stores software

warp contexts, initializes thread registers, and activates/deactivates

threads. Since these critical sections have dened entry and exit

points where the proposed SIMT instructions (Table 1) are used,

these instructions could be encoded manually and inserted in the

the assembly code as hex values. This approach achieves the re-

quired functionality without restricting the platform or requiring

any modications to the RISC-V compilers. Similarly, control di-

vergence and reconvergence are handled by macros that use C

inline assembly to implement the desired functionality as shown in

Figure 3.

5.2 Writing New GPU Kernels
One of the main goals of this project is to provide a platform that

is customizable enough to be able to support specic applications,

as mentioned in Section 4. An interface was designed to easily

write and develop GPU kernels without having to worry about the

architecture design or kernel implementation.

To write a GPU kernel, the header must be in the format de-

scribed in Figure 4. It’s important to note that unlike CUDA’s im-

plementation, wid (Warp ID) and tid (Thread ID) are stored in the

general-purpose registers and are handled by the software. Any

possible control divergent statements requires the use of __if and

__else macros described in Figure 3. In addition, to issue a request to

the runtime kernel to call this GPU kernel, vx_spawnWarps should

be used.

Note that requested NumW (i.e., the number of software warps)

and NumT (i.e., number of software threads) in Figure 4 could be

more than the available hardware resources, since vx_spawnWarps

is referring to software not hardware warps, as explained in Section

5.3.

5.3 Execution Model
The programming model of Vortex is very similar to that of CUDA’s.

Consider the hardware to be congured with 4 warps and 32 threads

per warp Vortex conguration and the software to contain a GPU

kernel called vx_mat_add as shown in Figure 4. The example below

describes the control ow of a program requesting 1024 software

warps each with 32 threads active to call vx_mat_add. The maxi-

mum number of software warps and software threads a user could

request is 2
32
. Figure 5 shows the pseudo-code for the steps de-

scribed below.

(1) Hardware Warp 0: The main program will do a system call

to the kernel to execute vx_mat_add as shown in Figure 4,

with NumW set to 1024 warps and NumT set to 32 threads.

(2) Hardware Warp 0: The runtime kernel will store the context

for the current warp. It will then round-robin the 1024 kernel

calls requested by the main program to the runqueue of

warps 1,2,3 and itself.

3



(3) Hardware Warp 0: The runtime kernel will use wspawn in-

struction described in section 3.1 to wake up hardware warps

1, 2, and 3.

(4) Hardware Warps 0,1,2,3: the runtime kernel will check if

there are any available tasks in the runqueue. If there is, it

will go to step 5 otherwise it will go to step 6.

(5) Hardware Warps 0,1,2,3: The runtime kernel will:

(a) use the memory manager to allocate the stacks for 32

threads requested by the main program

(b) utilize the clone instruction to set the stack pointer, return

address, argument zero tid (i.e. thread id), and argument

one wid (i.e. warp id) registers to the correct values for

each hardware thread. It does this by 1) Storing the register

state of thread zero 2) Setting thread zero’s registers to

thread one’s desired register values 3) cloning thread zero’s

register state to thread one’s registers 4) Repeating Steps

2 and 3 for the desired number of threads and 5) Restoring

the register state for thread zero.

(c) Utilize the tmc instruction to activate the rst 32 hardware

threads as requested by the main program. It will then call

vx_mat_add which will return to step 4 when it returns.

(6) Warps 1,2,3: Free their stack memory by calling the memory

manager then halt execution. Warp 0: Wait until warps 1,

2, and 3 are halted, load the context stored in step 2, then

return to the main program.

In addition to the example given above, there are other variations

supported by the kernel by setting dierent ags.

Complex Control Flow: In the example above, wid will have

a range of {0,...,NumW-1} and tid will have a range of {0,...,NumT-1}.

However, as described in Section 5.2, wid and tid are controlled

by the software which allows for a more exible control ow. An

input ag could be set as an input to vx_spawnWarps to only allow

odd or even IDs. For more control, a number generator in the form

of a lambda expression could also be passed as an input and would

be used to generate warp and thread IDs.

Asynchronous Requests: In the example above, the main pro-

gram made a synchronous call to the runtime kernel, blocking

hardware warp 0 until the request has been completed. However, in

step 1 warp 0 could have called the runtime kernel asynchronously

by setting an input ag to vx_spawnWarps. Thus, the tasks in step

2 would have been divided across hardware warps 1, 2, and 3 and

hardware warp 0 would have returned back to the main program.

Concurrent Execution of GPUKernels: In the example given

above, the main program requested to spawn warps to vx_mat_add.
However, if the main program made that request asynchronously,

it could request to spawn warps to another GPU kernel before the

exeuction of vx_mat_add ends; Thus, both of these GPU kernels

would be concurrently scheduled by the runtime kernel.

6 RESULTS
6.1 Evaluation Methodology
1, 2, 4, 8, 16, 32 warps/threads per warp congurations are evaluated

and the have been successfully
1
synthesized on an Intel

®
Arria

®

10 FPGA on 10AX115U3F45I2SG device for RV32I using Quartus

1
16, 32 warps with 32 threads per warp congurations failed due to routing congestion

and limited ALMs respectively.

Figure 2: Software stack of Vortex.

#define __if(cond) \\
register bool b asm("t0") = cond; \\
asm("split t0"); \\
if (b) {

#define __else \\
} else {

#define __endif \\
} \\
asm("join");

Figure 3: Control divergent __if __else macros pseudo-
implementation.

void vx_mat_add(unsigned tid, unsigned wid)
{

arg_t * args = (arg_t *) vx_get_arg_t();

unsigned * x_ptr = args->x;
unsigned * y_ptr = args->y;
unsigned * z_ptr = args->z;

unsigned num_cols = args->num_cols;

int idx = (wid * num_cols) + tid;
__if(tid < num_cols)
{

z_ptr[idx] = x_ptr[idx] + y_ptr[idx];
}
__else
__end_if

return;
}
NumW = 1024 software warps
NumT = 32 software threads per software warp
vx_spawnWarps(NumW, NumT, vx_mat_add, (&args));

Figure 4: A CUDA like GPU kernel interface.

4



#define AVA_WARPS 4
queue<Task> runqueues[AVA_WARPS];

void vx_spawnWarps(numW, numT, func, args)
{

// Only warp 0 thread 0 is active.
if (vx_sigsetjmp()) // Storing context

return;

// Round robin tasks to Warps 0, 1, 2, and 3.
vx_distribute_tasks(runqueues, numW, numT, func, args);

for (cur_warp = 1; cur_warp < AVA_WARPS; cur_warp++)
{

// Warp 0 communicating the hardware wid using t0
register int hardware_warp asm("t0") = cur_warp;
// Warp 0 requesting Warps to spawn at SCHEDULE
wspawn("t0", &&SCHEDULE, "t0");

}
// Warp 0 setting its own Hardware wid to 0.
{register int hardware_warp asm("t0") = 0;}

// Now thread 0 of warps 0,1,2, and 3 are active
SCHEDULE:
register int hardware_warp asm("t0");
Queue<Task> & myQueue = runqueues[hardware_warp];

// This loop will iterate for numW/AVA_WARPS
// iterations for each hardware warp
while(!myQueue.is_empty())
{

Task t = myQueue.dequeue();
vx_scheduleTask(t);

}

vx_barrier(0); // Synchronize all hardware warps

if (hardware_warp != 0) EBREAK; // Halt execution

// Now only warp 0 thread 0 is active.
vx_siglongjmp(); // Returns back to main program

}

Figure 5: vx_spawnWarps pseudo-Implementation. This
code assumes a Vortex conguration of four hardware
warps.

18.0. In these tests, the number of execution units are always kept

equal to the number threads in a warp for each conguration. The

number of cycles are simulated with a two-way set associative

L1 cache with 16 Kbytes, block size of 256 bytes, and a 16-Kbytes

sharedmemory. The number of banks is always kept the same as the

number of threads in a warp. To examine the performance of Vortex

for various congurations, we use a simple matrix multiplcation

benchmark: 1) initialize two 32 × 32 matrices, 2) multiply both

matrices, and 3) print the result.

Table 2: Some of the important functions implemented in
the Vortex software model.

Function Name Description

vx_spawnWarps Calls the kernel to spawn warps

vx_sm_malloc Allocates a shared memory segment

vx_sm_free Frees a shared memory segment

vx_mat_cpy Copy matrix to shared memory

vx_mat_mult Execute matrix multiplication

vx_mat_add Execute matrix addition

1

10

100

1000

1 thread 2 threads 4 threads 8 threads 16 threads 32 threadsTh
ou

sa
nd

s A
LU

Ts

1 warp 2 warps 4 warps 8 warps 16 warps 32 warps

1

10

100

1000

1 thread 2 threads 4 threads 8 threads 16 threads 32 threadsTh
ou

sa
nd

s R
eg

ist
er

s

1 warp 2 warps 4 warps 8 warps 16 warps 32 warps

1

10

100

1000

1 thread 2 threads 4 threads 8 threads 16 threads 32 threads

Th
ou

sa
nd

s A
LM

s

1 warp 2 warps 4 warps 8 warps 16 warps 32 warps

(a)

(b)

(c)

Figure 6: The cost of various Vortex congurations on an
Intel® Arria® 10 FPGA in terms of the number of (a) ALUTs,
(b) registers, and (c) ALMs, as a function of number of warps
and number of threads per warp.

6.2 Resource Utilization
Both Figures 6 and 7 show that the hardware resources required

for adding threads is more than that of adding warps. For exam-

ple, consider the following two congurations: (a) 4-warp with 32

threads per warp and 32 execution units and (b) 32-warps with

4 threads per warp and 4 execution units. (a) requires 19% more

ALMs, 2% more ALUTs, and 3% more registers than (b). While both

of these congurations require the same number of general purpose

registers, 4 warps * 32 threads/warp * 32 registers or 32 warps * 4
threads/warp * 32 registers, (a) is congured to have more execution

units than (b) which explains the dierence in resource utilization.

6.3 Performance
The hardware cost of adding a thread versus adding a warp has

a considerable eect on performance. Conguration (a) described

in Section 6.2 has a 25% lower fmax than conguration (b), thus

favoring a high warp count conguration. This is also caused by

the higher number of execution units and register fanout for con-

guration (a).

5



0
100
200
300
400

0
25
50
75

100
125
150

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 
w

ar
p

2 
w

ar
ps

4 
w

ar
ps

8 
w

ar
ps

16
 w

ar
ps

32
 w

ar
ps

1 thread 2 threads 4 threads 8 threads 16 threads 32 threads

Clock frequency (M
Hz)

Th
ou

sa
nd

 C
yc

le
s

Figure 7: The number of cycles and the fmax for each Vortex conguration on an Intel® Arria® 10 FPGA while multiplying
two 32 × 32 matrices then printing the result.

0
1
2
3
4
5
6
7

1 thread 2 threads 4 threads 8 threads 16 threads 32 threads

Sp
ee

du
p

1 warp 2 warps 4 warps 8 warps 16 warps 32 warps

Figure 8: The speedup of every conguration when per-
forming matrix multiplication relative to the one warp one
thread conguration.

However, when we look at the number of cycles illustrated in Fig-

ure 7, we observe that the combination of a high latency cache and

a ne-grained warp scheduler might be a big bottleneck. Figure 7

shows that (a) executed in 40% less cycles than (b), favoring a high

thread count conguration and illustrating that adding more warps

is causing a lower pipeline utilization. A better warp scheduler and

a higher cache port number would result in much better perfor-

mance. For example, a conguration of 32 warps and 4 threads,

each cache access would stall that warp for 4 cycles; A good warp

scheduler would not stall the pipeline and schedule the other 31

warps, resulting in a higher pipeline utilization.

Figure 8 shows the overall speedup of all congurations relative

to 1 warp and 1 thread per warp conguration. It shows that the

best speedup is a 1 warp and 32 threads per warp conguration,

favoring an expensive but highly parallel conguration over an

underutilized one.

7 CONCLUSION AND FUTUREWORK
This paper introduced Vortex general-purpose GPU (GPGPU) sys-

tem, which includes an ISA extension, a synthesizable microarchi-

tecture implementation, and a software model. The ISA extension

is compromised of only 5 new instructions and the software model

includes a runtime kernel and a library that do not require any

compiler modications. The microarchitecture implementation has

already been synthesized on Arria 10 FPGA with an fmax ranging

from 340 MHz to 90 MHz based on the conguration. In the future,

we plan to implement a better hardware warp scheduler and a cache

module that allow for a better pipeline utilization. We will also be

looking at congurations with higher warp and thread count and

comparing the performance to other SIMT and SIMD processors. In

addition, we plan on extending Vortex runtime kernel and library

with more GPU kernels, better resource utilization, and provide

support for some popular libraries like OpenCV.
2

8 ACKNOWLEDGMENT
We would like to thank Blaise Tine and Ahmed Elsabbagh for their

constant feedback, guidance, and expertise on the project.

REFERENCES
[1] Asanović, K., and Patterson, D. A. Instruction sets should be free: The case for

risc-v. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-146 (2014).

[2] Celio, C., Chiu, P.-F., Nikolic, B., Patterson, D. A., andAsanovi, K. Boomv2: an

open-source out-of-order risc-v core. In First Workshop on Computer Architecture
Research with RISC-V (CARRV) (2017).

[3] Collange, S. Simty: generalized simt execution on risc-v. In First Workshop on
Computer Architecture Research with RISC-V (CARRV 2017) (2017), p. 6.

[4] Fung, W. W. L., Sham, I., Yuan, G., and Aamodt, T. M. Dynamic warp formation

and scheduling for ecient gpu control ow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (Washington, DC, USA,

2007), MICRO 40, IEEE Computer Society, pp. 407–420.

[5] Gautschi, M., Schiavone, P. D., Traber, A., Loi, I., Pullini, A., Rossi, D.,

Flamand, E., Gürkaynak, F. K., and Benini, L. Near-threshold risc-v core with

dsp extensions for scalable iot endpoint devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 25, 10 (2017), 2700–2713.

[6] Gray, J. Grvi phalanx: A massively parallel risc-v fpga accelerator accelerator. In

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM) (2016), IEEE, pp. 17–20.

[7] Jia, Z., Maggioni, M., Staiger, B., and Scarpazza, D. P. Dissecting the nvidia

volta gpu architecture via microbenchmarking. CoRR abs/1804.06826 (2018).
[8] Kersey, C. D., Kim, H., and Yalamanchili, S. Lightweight simt core designs for

intelligent 3d stacked dram. In Proceedings of the International Symposium on
Memory Systems (New York, NY, USA, 2017), MEMSYS ’17, ACM, pp. 49–59.

[9] Lee, Y., Waterman, A., Avizienis, R., Cook, H., Sun, C., Stojanović, V., and

Asanović, K. A 45nm 1.3 ghz 16.7 double-precision gops/w risc-v processor

with vector accelerators. In ESSCIRC 2014-40th European Solid State Circuits
Conference (ESSCIRC) (2014), IEEE, pp. 199–202.

[10] Mellor-Crummey, J. M., and Scott, M. L. Algorithms for scalable synchroniza-

tion on shared-memory multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb.

1991), 21–65.

[11] Waterman, A., Lee, Y., Patterson, D. A., and Asanovi, K. The risc-v instruction

set manual. volume 1: User-level isa, version 2.0. Tech. rep., CALIFORNIA

UNIV BERKELEY DEPT OF ELECTRICAL ENGINEERING AND COMPUTER

SCIENCES, 2014.

[12] Waterman, A., Lee, Y., Patterson, D. A., and Asanovic, K. The risc-v instruc-

tion set manual, volume i: Base user-level isa. EECS Department, UC Berkeley,
Tech. Rep. UCB/EECS-2011-62 116 (2011).

[13] Zimmer, B., Lee, Y., Puggelli, A., Kwak, J., Jevtic, R., Keller, B., Bailey, S.,

Blagojevic, M., Chiu, P.-F., Le, H.-P., et al. A risc-v vector processor with

tightly-integrated switched-capacitor dc-dc converters in 28nm fdsoi. In 2015
Symposium on VLSI Circuits (VLSI Circuits) (2015), IEEE, pp. C316–C317.

2
The following is the link to the GitHub page for the project:

https://github.gatech.edu/casl/Vortex

6


