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Why do we need Simulation?
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Performance analysis of next-generation systems

Pre-silicon software optimizations

Architecture design space exploration



Verilog/RTL High-level

Trade-offs in Simulation
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Verilog/RTL High-level

Trade-offs in Simulation
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Sniper Simulator – An Overview

• Parallel simulator based on Interval Simulation
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1Currently not supported for RISCV

• Models multi-/many-cores running multithreaded1

and multi-program workloads

• Hardware validated for x86

• Flexible simulation options



Sniper – Beyond Traditional Simulation
• Strong adoption in industry and academia

• 550+ citations
• 800+ researcher downloads
• 64+ countries
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• Actively used since 2011
• Belgium-based team
• Supports next generation Xeon Phi (KNL++)
• HiPEAC TechTransfer Award



Sniper – Key Differentiators

• Fast development time

• Enables Limit Studies
• Branch Prediction
• Memory Dependence Prediction
• Shared Multi-level Cache Hierarchy
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Almost 10 
MIPS

1000 cores

Average error 
of just 11% 

with HW • High Performance and Scalability



Sniper - Interacting with the Simulator

• Python interfaces

• SimAPI
• Magic Instructions
• SimROIStart() - SimROIEnd()
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Sniper - Interacting with the Simulator

• Energy Stats
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Sniper - Interacting with the Simulator

• Loop Tracer
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Sniper + RISC-V ecosystem

• RISC-V 
• Open, Extensible ISA
• Collection of related software tools
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• Existing Architecture-level Software implementations
• Functional simulators

• Many additional things

Spike rv8



Comparison with existing solutions
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Sniper + RISC-V gem5 (RISC5) FireSim / Chisel / Verilog

Development 
Methodology

C++ based (SW) C++ based (HW) RTL based (HW)

Dev-time +++ ++ +

Sim-time +++ ++ ++++/+/+

Simulation
model

Cycle-level + Cycle-
approximate

Cycle-level Cycle-exact + Cycle-approximate

Flexibility Ease-of-use / modification Requires RTL/ 
abstract models

Fidelity Sophisticated models require hardware 
validation

Cycle-exact models derived from 
synthesizable RTL



Simulation Flow
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Sniper Architecture
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How did we enhance Sniper?
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How did we enhance Sniper?
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Configuration files
to resemble a BOOM processor

4

RISC-V functional simulators - rv8 / 
Spike were updated to support SIFT 
generation

1

3 Core Model
Parameters like description of 
ports/ functional units, latencies, 
etc. were updated

2 Decoder Library
Architectural agnostic methods 

were added to implement the decoding 
phase of the processor

Backend
……

SIFT 
pipes

…

Frontend
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Sniper Instruction Trace File Format (SIFT)
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• Dynamic Instruction stream generated by the Frontend

Instruction Execution Order

Memory Addresses for Loads and Stores

Branch Directions (taken/not taken)

Executed/masked info for Predicated instructions

D
ynam

ic



How to add new Frontend? 
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Sift::Writer::InstructionCount()
Sift::Writer::CacheOnly()
Sift::Writer::Instruction()

// addresses, branch direction, etc.

Instruction Instrumentation

Control

Sift::Writer::Magic()



How to add new Frontend? 
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rv8 / Spike



How to add new Frontend? 
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How to update Backend?
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$SNIPER_HOME/decoder_lib• Decoder Library
• 2 classes

• Decoder
• InstructionDecoded

$SNIPER_HOME/config• Config Files

$SNIPER_HOME/common/performance_model• Core Model



How to run Sniper ?
./run-sniper --frontend=[pin|dr|spike|rv8|legacy] --config
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[SNIPER] Start 
[SNIPER] --------------------------------------------------------------------------------
[SNIPER] Sniper using SIFT/trace-driven frontend
[SNIPER] Running full application in DETAILED mode
[SNIPER] --------------------------------------------------------------------------------
[SNIPER] Enabling performance models
[SNIPER] Setting instrumentation mode to DETAILED
Trace Monitor Started
[TRACE:0] -- DONE --
[SNIPER] Disabling performance models
[SNIPER] Leaving ROI after 18.26 seconds
OUT: RUN: TraceThread
[SNIPER] Simulated 5.0M instructions, 11.2M cycles, 0.45 IPC
[SNIPER] Simulation speed 273.4 KIPS (273.4 KIPS / target core - 3657.1ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD
[SNIPER] End
[SNIPER] Elapsed time: 18.41 seconds



Experimental Setup

• Sniper multi-core simulator
• Similar to BOOM v1 DefaultConfig

• Dispatch width:2, Issue Width:3, ROB:80
• 32KB L1s, 1MB L2
• 2.0GHz

• SPEC CPU2006 benchmarks
• First 5M instructions
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Initial Processor Performance Analysis
Testcase IPC KIPS

470.lbm 0.15 97.899

444.namd 1 304.719

450.soplex 1.52 343.668

456.hmmer 2.71 523.41

462.libquantum 2.65 611.968
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Source: Tuan Ta, et. al, “Simulating Multi-Core RISC-V Systems in gem5”, [CARRV 2018] 



Conclusion
• An infrastructure extension of Sniper 

• Sniper + RISC-V is now available  

• Next steps
• Improve the simulator features to allow for a detailed comparison with 

cycle-level processor implementations
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• Thank you
• Download Today!

• http://snipersim.org/w/Download
• Questions?

• http://groups.google.com/group/snipersim

2/6/2018 27

http://snipersim.org/w/Download
http://groups.google.com/group/snipersim
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