
Flexible Timing Simulation of RISC-V
Processors with Sniper

Neethu Bal Mallya1, Cecilia Gonzalez-Alvarez2, Trevor E. Carlson1

1National University of Singapore, Singapore
2Ghent University, Belgium

Outline

• Need for Simulation
• Sniper Simulator Overview
• Our enhancements to Sniper
• Initial Processor Performance Analysis
• Conclusion

2/6/2018 2

Why do we need Simulation?

2/6/2018 3

Performance analysis of next-generation systems

Pre-silicon software optimizations

Architecture design space exploration

Verilog/RTL High-level

Trade-offs in Simulation

2/6/2018 4

Verilog/RTL High-level

Trade-offs in Simulation

2/6/2018 5

Efficient MLP processor

Fetch Decode

Instr.
Queue

Bypass
Queue

Commit
Writeback

ALUs
and

Caches

Learn
Slice

Source: T.E.Carlson, et al., “Load Slice Core” [ISCA2015]

Sniper Simulator – An Overview

• Parallel simulator based on Interval Simulation

2/6/2018 6

1Currently not supported for RISCV

• Models multi-/many-cores running multithreaded1

and multi-program workloads

• Hardware validated for x86

• Flexible simulation options

Sniper – Beyond Traditional Simulation
• Strong adoption in industry and academia

• 550+ citations
• 800+ researcher downloads
• 64+ countries

2/6/2018 7

• Actively used since 2011
• Belgium-based team
• Supports next generation Xeon Phi (KNL++)
• HiPEAC TechTransfer Award

Sniper – Key Differentiators

• Fast development time

• Enables Limit Studies
• Branch Prediction
• Memory Dependence Prediction
• Shared Multi-level Cache Hierarchy

2/6/2018 8

Almost 10
MIPS

1000 cores

Average error
of just 11%

with HW • High Performance and Scalability

Sniper - Interacting with the Simulator

• Python interfaces

• SimAPI
• Magic Instructions
• SimROIStart() - SimROIEnd()

2/6/2018 9

$S
N

IP
ER

_H
O

M
E/

in
cl

ud
e/

sim
_a

pi
.h

Sniper - Interacting with the Simulator

• Energy Stats

2/6/2018 10

Run
McPAT

Update the statistics

Sniper - Interacting with the Simulator

• Loop Tracer

2/6/2018 11

cycles

in
st

ru
ct

io
ns

Sniper + RISC-V ecosystem

• RISC-V
• Open, Extensible ISA
• Collection of related software tools

2/6/2018 12

• Existing Architecture-level Software implementations
• Functional simulators

• Many additional things

Spike rv8

Comparison with existing solutions

2/6/2018 13

Sniper + RISC-V gem5 (RISC5) FireSim / Chisel / Verilog

Development
Methodology

C++ based (SW) C++ based (HW) RTL based (HW)

Dev-time +++ ++ +

Sim-time +++ ++ ++++/+/+

Simulation
model

Cycle-level + Cycle-
approximate

Cycle-level Cycle-exact + Cycle-approximate

Flexibility Ease-of-use / modification Requires RTL/
abstract models

Fidelity Sophisticated models require hardware
validation

Cycle-exact models derived from
synthesizable RTL

Simulation Flow

2/6/2018 14

RTL

Validation Only

Sn
ip

er Final
Check

Short
TestingDev

Final
Check

Short
TestingDevelopmentRT

L

Sniper Architecture

2/6/2018 15

Sniper Backend

L1

L1
L2

L1

L1
L2

Cache
Performance

Models

Core
Performance

Models

Core Model 1

Core Model 2

Core Model M-1

Core Model M

…

N
oC

Th
re

ad
 S

ch
ed

ul
er

Decoder
Library

SIFT 1

…

SIFT 2

SIFT M

SIFT M-1

SIFT pipes
Emulation/ Binary
Instrumentation

events thread 1

…

events thread 2

events thread M

events thread M-1

Sniper Frontend

How did we enhance Sniper?

2/6/2018 16

Sniper Backend

L1

L1
L2

L1

L1
L2

Cache
Performance

Models

Core
Performance

Models

Core Model 1

Core Model 2

Core Model M-1

Core Model M

…

N
oC

Th
re

ad
 S

ch
ed

ul
er

Decoder
Library

SIFT 1

…

SIFT 2

SIFT M

SIFT M-1

SIFT pipes
Emulation/ Binary
Instrumentation

events thread 1

…

events thread 2

events thread M

events thread M-1

Sniper Frontend

How did we enhance Sniper?

2/6/2018 17

Configuration files
to resemble a BOOM processor

4

RISC-V functional simulators - rv8 /
Spike were updated to support SIFT
generation

1

3 Core Model
Parameters like description of
ports/ functional units, latencies,
etc. were updated

2 Decoder Library
Architectural agnostic methods

were added to implement the decoding
phase of the processor

Backend
……

SIFT
pipes

…

Frontend

1
2

3
4

Sniper Instruction Trace File Format (SIFT)

2/6/2018 18

• Dynamic Instruction stream generated by the Frontend

Instruction Execution Order

Memory Addresses for Loads and Stores

Branch Directions (taken/not taken)

Executed/masked info for Predicated instructions

D
ynam

ic

How to add new Frontend?

2/6/2018 19

Sift::Writer::InstructionCount()
Sift::Writer::CacheOnly()
Sift::Writer::Instruction()

// addresses, branch direction, etc.

Instruction Instrumentation

Control

Sift::Writer::Magic()

How to add new Frontend?

2/6/2018 20

rv8 / Spike

How to add new Frontend?

2/6/2018 21

Backend
……

SIFT
pipes

…

Frontend

SIFTrv8 / Spike
rv8 / Spike

Sift::Writer

How to update Backend?

2/6/2018 22

$SNIPER_HOME/decoder_lib• Decoder Library
• 2 classes

• Decoder
• InstructionDecoded

$SNIPER_HOME/config• Config Files

$SNIPER_HOME/common/performance_model• Core Model

How to run Sniper ?
./run-sniper --frontend=[pin|dr|spike|rv8|legacy] --config

2/6/2018 23

[SNIPER] Start
[SNIPER] --
[SNIPER] Sniper using SIFT/trace-driven frontend
[SNIPER] Running full application in DETAILED mode
[SNIPER] --
[SNIPER] Enabling performance models
[SNIPER] Setting instrumentation mode to DETAILED
Trace Monitor Started
[TRACE:0] -- DONE --
[SNIPER] Disabling performance models
[SNIPER] Leaving ROI after 18.26 seconds
OUT: RUN: TraceThread
[SNIPER] Simulated 5.0M instructions, 11.2M cycles, 0.45 IPC
[SNIPER] Simulation speed 273.4 KIPS (273.4 KIPS / target core - 3657.1ns/instr)
[SNIPER] Setting instrumentation mode to FAST_FORWARD
[SNIPER] End
[SNIPER] Elapsed time: 18.41 seconds

Experimental Setup

• Sniper multi-core simulator
• Similar to BOOM v1 DefaultConfig

• Dispatch width:2, Issue Width:3, ROB:80
• 32KB L1s, 1MB L2
• 2.0GHz

• SPEC CPU2006 benchmarks
• First 5M instructions

2/6/2018 24

Initial Processor Performance Analysis
Testcase IPC KIPS

470.lbm 0.15 97.899

444.namd 1 304.719

450.soplex 1.52 343.668

456.hmmer 2.71 523.41

462.libquantum 2.65 611.968

2/6/2018 25

13
0.

87
13

0.
96

Source: Tuan Ta, et. al, “Simulating Multi-Core RISC-V Systems in gem5”, [CARRV 2018]

Conclusion
• An infrastructure extension of Sniper

• Sniper + RISC-V is now available

• Next steps
• Improve the simulator features to allow for a detailed comparison with

cycle-level processor implementations

2/6/2018 26

• Thank you
• Download Today!

• http://snipersim.org/w/Download
• Questions?

• http://groups.google.com/group/snipersim

2/6/2018 27

http://snipersim.org/w/Download
http://groups.google.com/group/snipersim

Flexible Timing Simulation of RISC-V
Processors with Sniper

Neethu Bal Mallya1, Cecilia Gonzalez-Alvarez2, Trevor E. Carlson1

1National University of Singapore, Singapore
2Ghent University, Belgium

	Flexible Timing Simulation of RISC-V Processors with Sniper
	Outline
	Why do we need Simulation?
	Trade-offs in Simulation
	Trade-offs in Simulation
	Sniper Simulator – An Overview
	Sniper – Beyond Traditional Simulation
	Sniper – Key Differentiators
	Sniper - Interacting with the Simulator
	Sniper - Interacting with the Simulator
	Sniper - Interacting with the Simulator
	Sniper + RISC-V ecosystem
	Comparison with existing solutions
	Simulation Flow
	Sniper Architecture
	How did we enhance Sniper?
	How did we enhance Sniper?
	Sniper Instruction Trace File Format (SIFT)
	How to add new Frontend?
	How to add new Frontend?
	How to add new Frontend?
	How to update Backend?
	How to run Sniper ?
	Experimental Setup
	Initial Processor Performance Analysis
	Conclusion
	Slide Number 27
	Flexible Timing Simulation of RISC-V Processors with Sniper

