

Flexible Timing Simulation of RISC-V Processors with Sniper

Neethu Bal Mallya¹, Cecilia Gonzalez-Alvarez², Trevor E. Carlson¹

¹National University of Singapore, Singapore ²Ghent University, Belgium

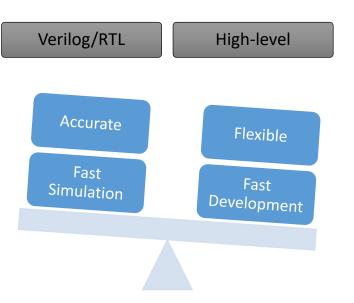
Outline

- Need for Simulation
- Sniper Simulator Overview
- Our enhancements to Sniper
- Initial Processor Performance Analysis
- Conclusion

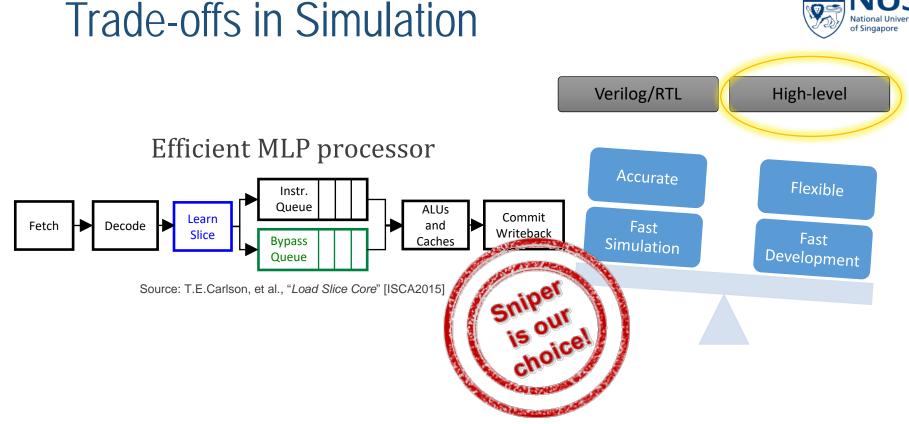
Why do we need Simulation?

Performance analysis of next-generation systems

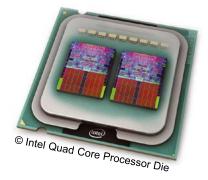
Architecture design space exploration



Pre-silicon software optimizations



Trade-offs in Simulation



Sniper Simulator – An Overview

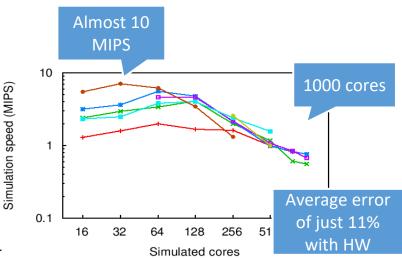
- Parallel simulator based on Interval Simulation
- Models multi-/many-cores running multithreaded¹ and multi-program workloads
- Hardware validated for x86
- Flexible simulation options

¹Currently not supported for RISCV

Sniper – Beyond Traditional Simulation

- Strong adoption in industry and academia
 - 550+ citations
 - 800+ researcher downloads
 - 64+ countries

- Actively used since 2011
 - Belgium-based team
 - Supports next generation Xeon Phi (KNL++)
 - HiPEAC TechTransfer Award



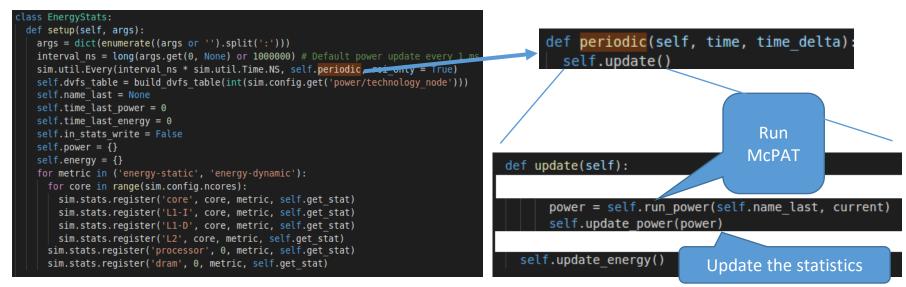
Sniper – Key Differentiators

- Fast development time
- Enables Limit Studies
 - Branch Prediction
 - Memory Dependence Prediction
 - Shared Multi-level Cache Hierarchy
- High Performance and Scalability

Sniper - Interacting with the Simulator

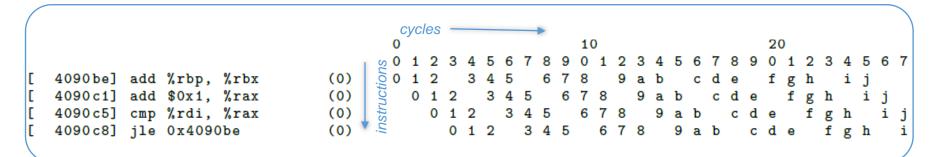
• Python interfaces

- SimAPI
 - Magic Instructions
 - SimROIStart() SimROIEnd()


// SimSetInstrumentMode options pi.h #define SIM_OPT_INSTRUMENT_DETAILED 0 ສ #define SIM OPT INSTRUMENT WARMUP HOME/include/sim_ #define SIM_OPT_INSTRUMENT_FASTFORWARD 2 // SimAPI commands SimRoiStart() SimRoiEnd() SimGetProcId() SimGetThreadId() SimSetThreadName(name) SimGetNumProcs() SimGetNumThreads() \$SNIPER_ SimSetFreqMHz(proc, mhz) SimSetOwnFreqMHz(mhz) SimGetFreqMHz(proc) SimGetOwnFreqMHz() SimMarker(arg0, arg1) SimNamedMarker(arg0, str) SimUser(cmd, arg) SimSetInstrumentMode(opt) SimInSimulator()

Sniper - Interacting with the Simulator

• Energy Stats



Sniper - Interacting with the Simulator

• Loop Tracer

[general]		
syntax=att	#	Optional
[loop_tracer]		
enabled=true		
base_address=4090be	#	Loop start address
iter_start=9000	#	Wait before starting
iter_count=20	#	Number to view

f Singapore

Sniper + RISC-V ecosystem

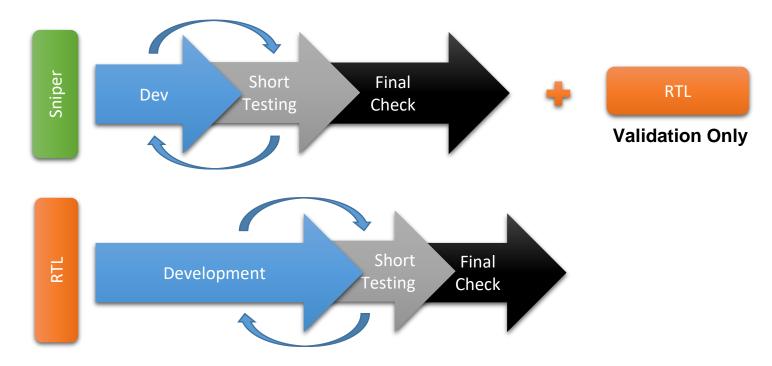
• RISC-V

- Open, Extensible ISA
- Collection of related software tools

- Existing Architecture-level Software implementations
 - Functional simulators

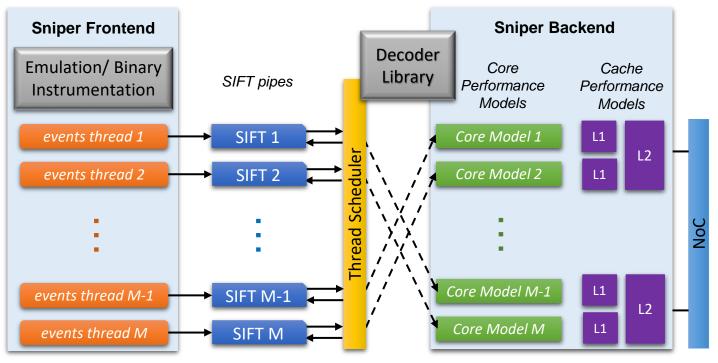
• Many additional things

Comparison with existing solutions

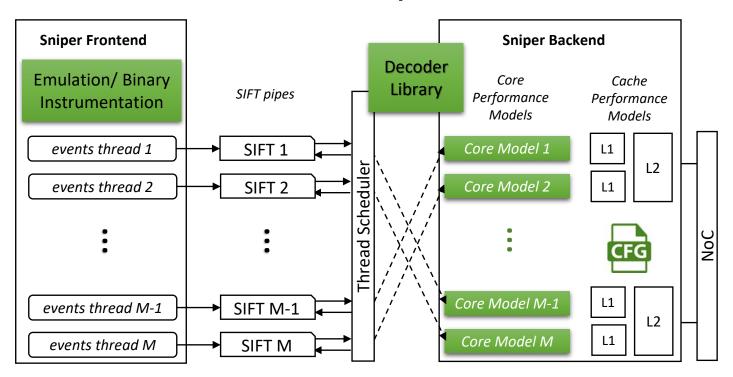


	Sniper + RISC-V	gem5 (RISC5)	FireSim / Chisel / Verilog
Development Methodology	C++ based (SW)	C++ based (HW)	RTL based (HW)
Dev-time	+++	++	+
Sim-time	+++	++	++++/+/+
Simulation model	Cycle-level + Cycle- approximate	Cycle-level	Cycle-exact + Cycle-approximate
Flexibility	Ease-of-use / modification		Requires RTL/ abstract models
Fidelity	Sophisticated models require hardware validation		Cycle-exact models derived from synthesizable RTL

Simulation Flow

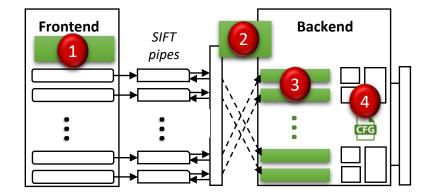


Sniper Architecture



How did we enhance Sniper?

How did we enhance Sniper?


RISC-V functional simulators - rv8 / Spike were updated to support SIFT generation

Decoder Library Architectural agnostic methods were added to implement the decoding phase of the processor

Core Model

Parameters like description of ports/ functional units, latencies, etc. were updated

Configuration files to resemble a BOOM processor

Sniper Instruction Trace File Format (SIFT)

• Dynamic Instruction stream generated by the Frontend

Instruction Execution Order

Memory Addresses for Loads and Stores

Branch Directions (taken/not taken)

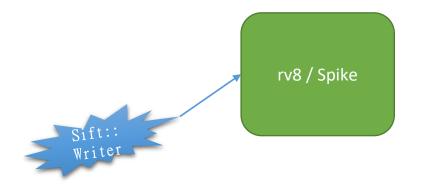
Executed/masked info for Predicated instructions

Dynamic

How to add new Frontend?

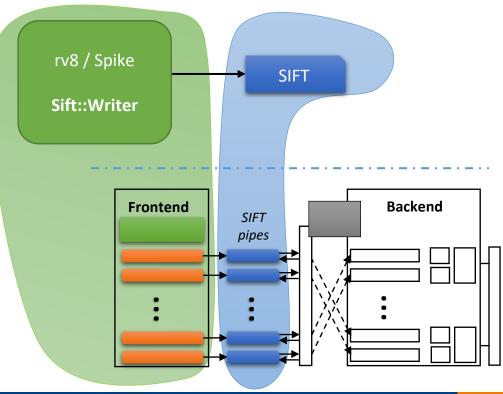
Control

Sift::Writer::Magic()


Instruction Instrumentation

Sift::Writer::InstructionCount()
Sift::Writer::CacheOnly()
Sift::Writer::Instruction()
// addresses, branch direction, etc.

How to add new Frontend?



How to add new Frontend?

How to update Backend?

- Decoder Library
 - 2 classes
 - Decoder
 - InstructionDecoded
- Core Model
- Config Files

\$SNIPER_HOME/decoder_lib

\$SNIPER_HOME/common/performance_model

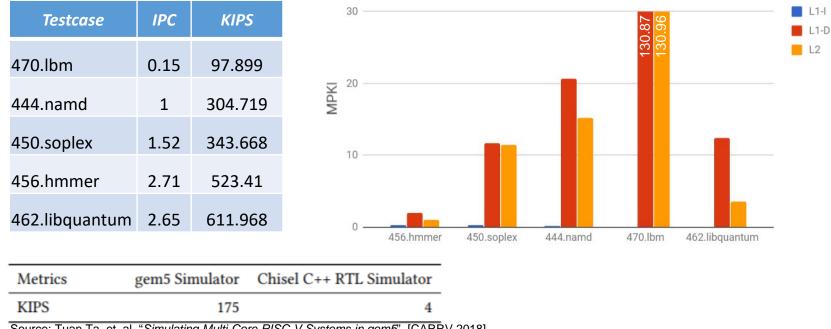
\$SNIPER_HOME/config

How to run Sniper?

./run-sniper --frontend=[pin | dr | spike | rv8 | legacy] --config

[SNIPER] Start [SNIPER] -----[SNIPER] Sniper using SIFT/trace-driven frontend [SNIPER] Running full application in DETAILED mode -----[SNIPER] -----[SNIPER] Enabling performance models [SNIPER] Setting instrumentation mode to DETAILED Trace Monitor Started [TRACE:0] -- DONE --[SNIPER] Disabling performance models [SNIPER] Leaving ROI after 18.26 seconds OUT: RUN: TraceThread [SNIPER] Simulated 5.0M instructions, 11.2M cycles, 0.45 IPC [SNIPER] Simulation speed 273.4 KIPS (273.4 KIPS / target core - 3657.1ns/instr) [SNIPER] Setting instrumentation mode to FAST_FORWARD [SNIPER] End [SNIPER] Elapsed time: 18.41 seconds

Experimental Setup



- Sniper multi-core simulator
 - Similar to BOOM v1 DefaultConfig
 - Dispatch width:2, Issue Width:3, ROB:80
 - 32KB L1s, 1MB L2
 - 2.0GHz
- SPEC CPU2006 benchmarks
 - First 5M instructions

Initial Processor Performance Analysis

Source: Tuan Ta, et. al, "Simulating Multi-Core RISC-V Systems in gem5", [CARRV 2018]

Conclusion

- An infrastructure extension of Sniper
- Sniper + RISC-V is now available

Alpha-version

- Next steps
 - Improve the simulator features to allow for a detailed comparison with cycle-level processor implementations

- Thank you
- Download Today!
 - <u>http://snipersim.org/w/Download</u>
- Questions?
 - <u>http://groups.google.com/group/snipersim</u>

Flexible Timing Simulation of RISC-V Processors with Sniper

Neethu Bal Mallya¹, Cecilia Gonzalez-Alvarez², Trevor E. Carlson¹

¹National University of Singapore, Singapore ²Ghent University, Belgium

