
A Formally Verified Cryptographic Extension
to a RISC-V Processor

Joseph R. Kiniry, Daniel M. Zimmerman,  
and Robert Dockins, Galois
Rishiyur Nikhil, Bluespec 

Distribution Statement A: Approved for Public Release, Distribution Unlimited

 
This material is based upon work supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. HR0011-18-C-0013. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Defense Advanced Research Projects Agency (DARPA).

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Security in Computing Systems

• security in computing systems depends on
having correct and secure software, firmware,
and hardware

• formal reasoning about correctness can provide
solid assurance for software and firmware, less
solid but improving assurance for hardware

• formal reasoning about system security is just
getting started

�2

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Security Assurance

• for software and firmware, security typically
relies on cryptographic foundations and open
development artifacts, e.g., protocol and
algorithm specifications and proofs

• for hardware, security typically relies on
secrecy and limited amounts of testing
• i.e., “security by wishful thinking”

• an open ISA like RISC-V is fertile ground for
changing this!

�3

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Our Proof of Concept

• a formally verified cryptographic extension (a
full AES block cipher) to Bluespec’s Piccolo
RISC-V RV32I

• a small system integrating the modified Piccolo
with an assurance case spanning hardware,
firmware, and software

• here, we describe the cryptographic extension
and the assurance techniques we used

�4

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Cryptographic Implementation
Assurance

• assurance of crypto hardware and software is
typically achieved today through validation, such as
in NIST’s FIPS and CAVP programs

• the only part of this validation that deals with
correctness is CAVP tests
• a validation lab generates large set of test vectors
• vendor is given the test vectors and told to run

them on the implementation under validation
• vendor returns result vectors to the lab
• lab evaluates result vectors—if all correct, thumbs

up, otherwise thumbs down

�5

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Problems with  
Current Validation Processes

• vendors are trusted to do the right thing, instead of
gaming the system by generating result vectors in
whatever way is convenient

• test vectors test a tiny fraction (for AES, on the
order of 10-72%) of the state space

• test vectors test only correctness, not security—
many insecure validated implementations (e.g.,
Heartbleed and the other dozen branded vulns)

• once an implementation is validated, any change—
even security bug fixes—requires expensive and
time consuming re-validation!

�6

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Applied Formal Methods for Crypto

• we can formally verify correctness and security
properties of cryptographic models (algorithms,
protocols) and implementations

• models are reference specifications for formal
verification or rigorous validation of hardware or
software implementations

• models can also be used to synthesize
implementations, generate test benches,
measure coverage, perform bisimulation, etc.

�7

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Applied Formal Methods for Crypto

• software implementations can be formally reasoned
about in multiple ways
• is it correct with respect to a model?
• does it have side channel vulnerabilities?

• formal reasoning for hardware implementations is
significantly less mature than for software

• current hardware “formal” tools (e.g., Cadence’s
JasperGold etc.) are unable to reason about the
correctness of even simple crypto algorithms

• no problem for vendors seeking FIPS or CAVP
validation… but big problem for high-assurance
secure systems!

�8

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

The Near Future—Validation

• improve the security validation process by
introducing/mandating applied formal methods
• enormously better assurance of correctness

than sets of test vectors
• detection of information flow issues that lead

to security vulnerabilities (no side channels)
• reuse of assurance artifacts for faster

(possibly differential) revalidation

�9

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

The Near Future—Hardware Assurance

• our perspective: modern hardware engineering is
very much like outdated software engineering

• how to move hardware assurance forward
• repurpose/adapt the best R&D in applied formal

methods for software
• choose to use automated synthesis over manually

written implementations whenever possible
• concurrently use a variety of tools and techniques

to design, implement, validate, and verify
cryptographic modules

• this case study is exactly along these lines

�10

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Our Case Study

�11

18

to the hardware for the software. In particular, it handles the mapping of software buffers
to hardware memory regions for performing encryption or decryption. The software is
responsible for all top-level functionality, including device configuration and data
streaming. The demonstrator’s architecture and main constituent subsystems are
summarized in Figure 6.

Figure 6 The SHAVE Demonstrator System Architecture

3.4.2 Assurance. A formal assurance case is provided for each layer, and each layer’s

assurance case provides guarantees to the layer above and relies upon guarantees
provided by the layer below. Assurance is provided in several forms, ranging from
traceable specifications of capabilities and requirements to implementations and evidence
to runtime verification with manually-written and automatically-generated test harnesses
to formal mathematical proof of security and correctness properties.

3.4.3 Hardware. The hardware layer is the SHAVE Secure Processor—a 32 bit RISC-V chip
with a cryptographic hardware extension that is effectively an AES128 native instruction.
The RISC-V chip that we use is Bluespec’s Piccolo architecture, which implements the
RISC-V ISA RV32I and privilege levels U and M. It is a simple 3-stage in-order pipeline.

The SoC that we simulate is Bluespec’s 2nd generation SoC which includes as a part of
its fabric DRAM with a memory controller, a timer, a UART, and a hardware accelerated
AES128 implementation. As this SoC is built with Bluespec’s RISC-V Verification
Factory, we are able to load new binaries, run, debug, and interact with programs in the
SHAVE Secure Processor as it runs in simulation (in a Verilog simulator) or on an FPGA
board (a Xilinx Kintex-7, in particular).

HARDWARE RISC-V
CPU

AES
NI

FIRMWARE

SOFTWARE
CRYPTO LIBRARY

NO OPERATING SYSTEM

STREAMING ENCRYPTION
APPLICATION

CRYPTO FIRMWARE

software
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

firmware
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

RISC-V in
BSV

BSV in Coq

AES in BSV
AES in
Cryptol

AES in SV

library
theory

(Cryptol)

firmware
theory

(Cryptol)

RISC-V in SV

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Our Case Study

�12

18

to the hardware for the software. In particular, it handles the mapping of software buffers
to hardware memory regions for performing encryption or decryption. The software is
responsible for all top-level functionality, including device configuration and data
streaming. The demonstrator’s architecture and main constituent subsystems are
summarized in Figure 6.

Figure 6 The SHAVE Demonstrator System Architecture

3.4.2 Assurance. A formal assurance case is provided for each layer, and each layer’s

assurance case provides guarantees to the layer above and relies upon guarantees
provided by the layer below. Assurance is provided in several forms, ranging from
traceable specifications of capabilities and requirements to implementations and evidence
to runtime verification with manually-written and automatically-generated test harnesses
to formal mathematical proof of security and correctness properties.

3.4.3 Hardware. The hardware layer is the SHAVE Secure Processor—a 32 bit RISC-V chip
with a cryptographic hardware extension that is effectively an AES128 native instruction.
The RISC-V chip that we use is Bluespec’s Piccolo architecture, which implements the
RISC-V ISA RV32I and privilege levels U and M. It is a simple 3-stage in-order pipeline.

The SoC that we simulate is Bluespec’s 2nd generation SoC which includes as a part of
its fabric DRAM with a memory controller, a timer, a UART, and a hardware accelerated
AES128 implementation. As this SoC is built with Bluespec’s RISC-V Verification
Factory, we are able to load new binaries, run, debug, and interact with programs in the
SHAVE Secure Processor as it runs in simulation (in a Verilog simulator) or on an FPGA
board (a Xilinx Kintex-7, in particular).

HARDWARE RISC-V
CPU

AES
NI

FIRMWARE

SOFTWARE
CRYPTO LIBRARY

NO OPERATING SYSTEM

STREAMING ENCRYPTION
APPLICATION

CRYPTO FIRMWARE

software
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

firmware
C code

behavioral
spec

(ACSL/
Cryptol)

architecture
spec

(BON)

RISC-V in
BSV

BSV in Coq

AES in BSV
AES in
Cryptol

AES in SV

library
theory

(Cryptol)

firmware
theory

(Cryptol)

RISC-V in SV

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

AES Extension to RISC-V

• written by hand in BSV, based on one of
Galois’s existing Cryptol specifications of AES

• not a proper RISC-V ISA extension
• implemented as a coprocessor that uses DMA to

read/write key and text blocks from/to main
memory, controlled and synchronized via
memory-mapped CSRs

�13

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Formal Verification of AES Extension

• extended Galois’s existing formal methods tools
(SAW) to reason about a core subset of BSV

• used multiple independent formal specifications
of AES and multiple verified firmware/software
implementations

• used Software Analysis Workbench (SAW) to
verify mutual equivalence of AES
specifications, BSV AES implementation, and
firmware/software AES implementations

�14

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Rigorous Validation of  
Secure Systems

• automatically generate test benches from
specifications when at all possible

• treat RTL like any other programming language
• hand-write ~1% of test cases that are scenario-

based, automatically generate all other tests
• uniformly generate parametrized test cases by

translating theorems about formal model to
software, firmware, and hardware test benches

�15

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Product Line Engineering  
and Assurance

• treat the entire system as a product line for
design, development, and assurance

�16

SHAVE
Secure CPU

Security
Architecture

Group

RISC-V
CPU

ARM
CPU

ISA Group
width = 32

Tagged
Scope Group

DRAM

Registers ICache

DCache

Tagged Architecture
size: ℕ Crypto Group

AES SHA2

Symmetric
Cipher Group

keysize: 128
blocksize: 128

MD5

RNG
Group

Hash Group

blocksize: ℕ

Asymmetric
Cipher Group

keysize: ℕ
blocksize: ℕ

3DES

RSA

ElGamal

PRNG TRNG

RISC-V
Group

Z-
scale

Rocket BOOM

Piccolo

kind: hw
assurance: verified

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Product Line Engineering  
and Assurance

• treat the entire system as a product line for
design, development, and assurance

• configure the product by selecting variants and
automatically build the same product targeting
• software simulation of platform on an OS
• software vs. hardware cryptography
• software simulation of hardware
• FPGA simulation of hardware

�17

© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Ongoing and Future Work

• continue to try to use modern commercial formal
verification tools to verify AES SV and understand
the edge capabilities of these tools

• develop new HDL verification tools to verify
currently-unverifiable properties about hardware
architectures’ and their implementations’
correctness and security properties

• develop a DSL specification language for hardware
that permits the specification of system architecture
and its correctness and security properties

�18

