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Security in Computing Systems

• security in computing systems depends on 
having correct and secure software, firmware, 
and hardware

• formal reasoning about correctness can provide 
solid assurance for software and firmware, less 
solid but improving assurance for hardware

• formal reasoning about system security is just 
getting started
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Security Assurance

• for software and firmware, security typically 
relies on cryptographic foundations and open 
development artifacts, e.g., protocol and 
algorithm specifications and proofs

• for hardware, security typically relies on 
secrecy and limited amounts of testing
• i.e., “security by wishful thinking”

• an open ISA like RISC-V is fertile ground for 
changing this!
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Our Proof of Concept

• a formally verified cryptographic extension (a 
full AES block cipher) to Bluespec’s Piccolo 
RISC-V RV32I

• a small system integrating the modified Piccolo 
with an assurance case spanning hardware, 
firmware, and software

• here, we describe the cryptographic extension 
and the assurance techniques we used
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Cryptographic Implementation 
Assurance

• assurance of crypto hardware and software is 
typically achieved today through validation, such as 
in NIST’s FIPS and CAVP programs

• the only part of this validation that deals with 
correctness is CAVP tests
• a validation lab generates large set of test vectors
• vendor is given the test vectors and told to run 

them on the implementation under validation
• vendor returns result vectors to the lab
• lab evaluates result vectors—if all correct, thumbs 

up, otherwise thumbs down
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Problems with  
Current Validation Processes

• vendors are trusted to do the right thing, instead of 
gaming the system by generating result vectors in 
whatever way is convenient

• test vectors test a tiny fraction (for AES, on the 
order of 10-72%) of the state space

• test vectors test only correctness, not security—
many insecure validated implementations (e.g., 
Heartbleed and the other dozen branded vulns)

• once an implementation is validated, any change—
even security bug fixes—requires expensive and 
time consuming re-validation!
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Applied Formal Methods for Crypto

• we can formally verify correctness and security 
properties of cryptographic models (algorithms, 
protocols) and implementations

• models are reference specifications for formal 
verification or rigorous validation of hardware or 
software implementations

• models can also be used to synthesize 
implementations, generate test benches, 
measure coverage, perform bisimulation, etc.
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Applied Formal Methods for Crypto

• software implementations can be formally reasoned 
about in multiple ways
• is it correct with respect to a model?
• does it have side channel vulnerabilities?

• formal reasoning for hardware implementations is 
significantly less mature than for software

• current hardware “formal” tools (e.g., Cadence’s 
JasperGold etc.) are unable to reason about the 
correctness of even simple crypto algorithms

• no problem for vendors seeking FIPS or CAVP 
validation… but big problem for high-assurance 
secure systems!
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The Near Future—Validation

• improve the security validation process by 
introducing/mandating applied formal methods
• enormously better assurance of correctness 

than sets of test vectors
• detection of information flow issues that lead 

to security vulnerabilities (no side channels)
• reuse of assurance artifacts for faster 

(possibly differential) revalidation
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The Near Future—Hardware Assurance

• our perspective: modern hardware engineering is 
very much like outdated software engineering

• how to move hardware assurance forward
• repurpose/adapt the best R&D in applied formal 

methods for software
• choose to use automated synthesis over manually 

written implementations whenever possible
• concurrently use a variety of tools and techniques 

to design, implement, validate, and verify 
cryptographic modules

• this case study is exactly along these lines
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Our Case Study
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to the hardware for the software. In particular, it handles the mapping of software buffers 
to hardware memory regions for performing encryption or decryption. The software is 
responsible for all top-level functionality, including device configuration and data 
streaming. The demonstrator’s architecture and main constituent subsystems are 
summarized in Figure 6. 
 

 

Figure 6  The SHAVE Demonstrator System Architecture 

 
3.4.2 Assurance. A formal assurance case is provided for each layer, and each layer’s 

assurance case provides guarantees to the layer above and relies upon guarantees 
provided by the layer below. Assurance is provided in several forms, ranging from 
traceable specifications of capabilities and requirements to implementations and evidence 
to runtime verification with manually-written and automatically-generated test harnesses 
to formal mathematical proof of security and correctness properties. 

3.4.3 Hardware. The hardware layer is the SHAVE Secure Processor—a 32 bit RISC-V chip 
with a cryptographic hardware extension that is effectively an AES128 native instruction. 
The RISC-V chip that we use is Bluespec’s Piccolo architecture, which implements the 
RISC-V ISA RV32I and privilege levels U and M. It is a simple 3-stage in-order pipeline. 

The SoC that we simulate is Bluespec’s 2nd generation SoC which includes as a part of 
its fabric DRAM with a memory controller, a timer, a UART, and a hardware accelerated 
AES128 implementation. As this SoC is built with Bluespec’s RISC-V Verification 
Factory, we are able to load new binaries, run, debug, and interact with programs in the 
SHAVE Secure Processor as it runs in simulation (in a Verilog simulator) or on an FPGA 
board (a Xilinx Kintex-7, in particular). 
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AES Extension to RISC-V

• written by hand in BSV, based on one of 
Galois’s existing Cryptol specifications of AES

• not a proper RISC-V ISA extension
• implemented as a coprocessor that uses DMA to 

read/write key and text blocks from/to main 
memory, controlled and synchronized via 
memory-mapped CSRs

�13



© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Formal Verification of AES Extension

• extended Galois’s existing formal methods tools 
(SAW) to reason about a core subset of BSV

• used multiple independent formal specifications 
of AES and multiple verified firmware/software 
implementations

• used Software Analysis Workbench (SAW) to 
verify mutual equivalence of AES 
specifications, BSV AES implementation, and 
firmware/software AES implementations
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Rigorous Validation of  
Secure Systems

• automatically generate test benches from 
specifications when at all possible

• treat RTL like any other programming language
• hand-write ~1% of test cases that are scenario-

based, automatically generate all other tests
• uniformly generate parametrized test cases by 

translating theorems about formal model to 
software, firmware, and hardware test benches
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Product Line Engineering  
and Assurance

• treat the entire system as a product line for 
design, development, and assurance

�16

SHAVE 
Secure CPU

Security 
Architecture 

Group

RISC-V
CPU

ARM 
CPU

ISA Group
width = 32

Tagged 
Scope Group

DRAM

Registers ICache

DCache

Tagged Architecture
size: ℕ Crypto Group

AES SHA2

Symmetric 
Cipher Group

keysize: 128
blocksize: 128 

MD5

RNG 
Group

Hash Group

blocksize: ℕ 

Asymmetric 
Cipher Group

keysize: ℕ
blocksize: ℕ 

3DES

RSA

ElGamal

PRNG TRNG

RISC-V 
Group

Z-
scale

Rocket BOOM

Piccolo

kind: hw
assurance: verified 



© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Product Line Engineering  
and Assurance

• treat the entire system as a product line for 
design, development, and assurance

• configure the product by selecting variants and 
automatically build the same product targeting
• software simulation of platform on an OS
• software vs. hardware cryptography
• software simulation of hardware
• FPGA simulation of hardware

�17



© 2018 Galois, Inc.‹#›

© 2018 Galois, Inc.

Ongoing and Future Work

• continue to try to use modern commercial formal 
verification tools to verify AES SV and understand 
the edge capabilities of these tools

• develop new HDL verification tools to verify 
currently-unverifiable properties about hardware 
architectures’ and their implementations’ 
correctness and security properties

• develop a DSL specification language for hardware 
that permits the specification of system architecture 
and its correctness and security properties
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