
Implementation of Direct
Segments on a RISC-V

Processor
Nikhita Kunati, Michael M. Swift
University of Wisconsin-Madison

1

Key Points

Past analysis shows
TLB misses can spend 5%-50% of execution cycles on TLB misses.
Rich features of Paged VM is not needed by most applications

Direct Segments on a RISC-V Rocket Core
Paged VM as usual where needed and Segmentation where possible
Perform Direct Segment Lookup on a TLB Miss.

Software Support : RISC-V Linux Kernel
Contiguous memory allocator to reserve and use a contiguous region of
Physical memory
Allocate Primary Regions (contiguous range of virtual addresses).

2

How Bad Is It ?

0"

5"

10"

15"

20"

25"

30"

35"

gra
ph
50
0"

me
mc
ac
he
d""

My
SQ
L"

NP
B:B
T"

NP
B:C
G"

GU
PS
"Pe

rc
en

ta
ge
"o
f"e

xe
cu
Co

n"
cy
cl
es
"w
as
te
d"

4KB$

2MB$

1GB$

$Direct$
Segment$

83.1$ 51.3$51.1$

0"

5"

10"

15"

20"

25"

30"

35"

gra
ph
50
0"

me
mc
ac
he
d""

My
SQ
L"

NP
B:B
T"

NP
B:C
G"

GU
PS
"Pe

rc
en

ta
ge
"o
f"e

xe
cu
Co

n"
cy
cl
es
"w
as
te
d"

4KB$

2MB$

1GB$

$Direct$
Segment$

83.1$ 51.3$51.1$

3

Paged VM: Why is it needed ?

• Shared memory regions for Inter-Process-Communication
• Code regions protected by per-page R/W/E
• Copy on-write uses per-page R/W for lazy implementation

of fork.
• Guard pages at the end of thread stacks.

4

Dynamically allocated
Heap region

Paging Valuable Paging Not Needed

Constants Shared Memory Mapped Files

VA

StackCode

Guard pages

Paged VM not needed for MOST memory

5

Paged VM: Why is it needed ?

Direct Segments

OFFSET

Conventional Paging

PA

1 2 Direct Segment

VA

BASE LIMIT

6

BASE LIMIT

OFFSET

PA

VA1 VA2

BASE = Start VA of Direct Segment
LIMIT = End VA of Direct Segment
OFFSET = BASE – Start PA of Direct Segment

Direct Segment Registers

7

Prior Evaluation: BadgerTrap

• Tool to instrument x86-64 TLB misses.
• Trap all TLB misses by duping the system into believing that

the PTE residing in memory is invalid.
• Insert translations into TLB, mark invalid in page table
• Once evicted from the TLB subsequent accesses causes a

trap.

8

Previous Evaluation of Direct Segments
• In the handler -

Record whether the address falls in the primary region mapped
using direct segment
Reload the PTE into the TLB
Again mark the PTE to invalid in memory

9

Dynamically allocated
Heap region

Paging Valuable Paging Not Needed

VA

TLB misses here are avoided

Shortcomings of the previous evaluation

• Emulation code checks the Direct Segment on a L2 TLB miss.
• Cannot accurately determine the cycles saved.
• Does not include the effects on pipeline timing from adding

comparisons to the Base and Limit registers

10

Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket
• OS support
• Lessons learned

RISC-V Ecosystem successes and challenges.

11

vpnVPN offset

vpnPPN offset

TLB
lookup

DS
lookup

Page
table

walker

miss miss

Design Choices

Original Direct
Segment paper
proposes this

12
Original Design

vpnVPN offset

vpnPPN offset

TLB
lookup

DS
lookup

Page
table

walker

DS miss

vpnVPN offset

vpnPPN offset

TLB
lookup

DS
lookup

Page
table

walker

miss

Tlb miss

Design Choices

13

2. Before pagewalk 3. Parallel to pagewalk

vpnVPN offset

vpnPPN offset

TLB
lookup

DS
lookup

Page
table

walker

miss miss

1. Original Design

vpnVPN offset

vpnPPN offset

TLB
lookup

DS
lookup

Page
table

walker

DS miss

Tlb miss

Design Choices

Our
Implementation

14

Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket
• OS support
• Lessons learned

RISC-V Ecosystem successes and challenges.

15

OffsetVPN

OffsetPPN

TLB
Lookup

Page
Table
Walk

hit/miss
Miss

Previous Address Translation in Rocket Core

16

OffsetVPN

OffsetPPN

TLB
Lookup

Page
Table
Walk

Base Limit

≥ ? < ?

Offset

+

hit/miss
Miss

Changed Address Translation in Rocket Core

17

Hardware Support in Rocket Core
• Added CSR registers - Supervisor Direct Segment Base (SDSB), Supervisor Direct

Segment Limit (SDSL), and Supervisor Direct Segment Offset (SDSO) to store the

base, limit and offset.

• The least significant bit of SDSL is the enable bit, to enable/disable Direct Segments

on a per-process basis.

• Direct Segment lookup performed on a TLB miss. This was chosen because of the

ease of integrating the Direct Segment lookup into the existing TLB unit in Rocket.

18

Changes made to the TLB unit in Rocket

• If TLB miss and DS enabled then check if Virtual Address lies in between
base and limit.

• We also check the protection bits in the Limit register.
• If Direct segment lookup successful compute Physical address by adding

offset to Virtual Address.
• If Direct segment lookup unsuccessful set the ds_miss signal

19

Changes made to the TLB unit in Rocket

s_ready s_request s_wait s_wait_inv

TLB
request

PTW resp
(refill TLB)

Req &&
tlb_miss

sfence

PTW req
ready

sfence

PTW req ready
&& sfence

&& ds_miss

20

Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket
• OS support
• Lessons learned

RISC-V Ecosystem successes and challenges.

21

OS Support – RISC-V Linux kernel

Create contiguous physical and virtual memory region
• Reserve physical memory at startup – Contiguous Memory allocator.

dma_contiguous_reserve(phys_addr_t limit); Default is 16MB
• Create Primary region(contiguous range of virtual address) on

encountering a primary process
• Allocate the reserved CMA region

*dma_alloc_from_contiguous(struct device *dev, int count, unsigned int
align);

22

OS Support – RISC-V Linux kernel

Setup Direct Segment registers
• BASE = Start VA of Direct Segment
• LIMIT = End VA of Direct Segment
• OFFSET = BASE – Start PA of Direct Segment
• Save and restore register values as part of process metadata on context-

switch

23

Design Methodology

Spike RISC-V ISA Simulator
• Prototype of Direct Segments modified the walk() function.
• Tested with custom RISC-V assembly tests that set up primary regions.

RISC-V ISA Qemu
• Implement Direct Segments by modifying the get_physical_address()

function.
• Chose Qemu because of the ease of testing RISC-V Linux Kernel changes.

24

Design Methodology

Direct segment logic and RISC-V linux kernel changes were tested on Spike
and Qemu first because of the challenges faced with Verilator.

Challenges with Verilator
Very slow booting the linux kernel takes ~ 1 day.
Lack of useful debug prints in Verilator.

25

Lessons Learned
RISC-V Ecosystem Successes
• Well defined instruction-set
• Ease of configuring Rocket
• Plenty of Simulators
• RISC-V assembly test suite.

RISC-V Ecosystem Challenges
• The rapid pace of development within the RISC-V ecosystem
• Documentation across RISC-V projects either insufficient or missing.

RISC-V Linux Kernel Challenges
• Only basic support in RISCV Linux
• kernel was constantly under development

26

RISC-V Ecosystem Successes

• Well defined instruction-set with ease of adding new
registers and instructions.

• Ease of configuring Rocket(Soc Generator).

27

RISC-V Ecosystem Successes

• Plenty of Simulators –
Spike, RISC-V Qemu, Verilator.

• Comprehensive RISC-V assembly test suite.

28

RISC-V Ecosystem Challenges

The rapid pace of development within the RISC-V ecosystem
posed a challenge to successfully implement and build
Direct Segment hardware.

29

RISC-V Ecosystem Challenges

• Lack of comments explaining the flow in a particular unit
and across multiple units in Rocket.

• Documentation across RISC-V projects either insufficient
or missing.

30

RISC-V Linux Kernel Challenges

• Basic support of RISC-V added to Linux kernel 4.15 sufficient
to boot and not much else.

• Memory Hotplug support not present hence we had to find
an alternative(CMA).

31

RISC-V Linux Kernel Challenges

• RISC-V Linux kernel was constantly under development.
• Obtaining the right version of the kernel which would boot on

Qemu and Verilator was difficult.

32

Conclusion

• RISC-V is an excellent platform for virtual memory research.
• Well defined ISA, Open source implementation aid research
• Call for more engagement for virtual memory research.

33

Future Work

• Getting the Kernel changes working on Verilator.
• Measure the timing impact of adding the extra logic.
• Impact of alternative design choices.

34

35

Thank You
&

Questions?

