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Key Points

Past analysis shows
TLB misses can spend 5%-50% of execution cycles on TLB misses.
Rich features of Paged VM is not needed by most applications

Direct Segments on a RISC-V Rocket Core
Paged VM as usual where needed and Segmentation where possible
Perform Direct Segment Lookup on a TLB Miss.

Software Support : RISC-V Linux Kernel
Contiguous memory allocator to reserve and use a contiguous region of 
Physical memory
Allocate Primary Regions (contiguous range of virtual addresses).
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How Bad Is It ?
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Paged VM: Why is it needed ?

• Shared memory regions for Inter-Process-Communication
• Code regions protected by per-page R/W/E 
• Copy on-write uses per-page R/W for lazy implementation 

of fork.
• Guard pages at the end of thread stacks.
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Dynamically allocated
Heap region

Paging Valuable Paging Not Needed

Constants Shared Memory Mapped Files

VA

StackCode

Guard pages

Paged VM  not needed for MOST memory
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Paged VM: Why is it needed ?



Direct Segments

OFFSET

Conventional Paging

PA

1 2 Direct Segment

VA

BASE                                        LIMIT         
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BASE                 LIMIT     

OFFSET

PA

VA1 VA2

BASE = Start VA of Direct Segment
LIMIT = End VA of Direct Segment
OFFSET = BASE – Start PA of Direct Segment

Direct Segment Registers
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Prior Evaluation: BadgerTrap

• Tool to instrument x86-64 TLB misses.
• Trap all TLB misses by duping the system into believing that 

the PTE residing in memory is invalid. 
• Insert translations into TLB, mark invalid in page table 
• Once evicted from the TLB subsequent accesses causes a 

trap.
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Previous Evaluation of Direct Segments
• In the handler -

Record whether the address falls in the primary region mapped 
using direct segment
Reload the PTE into the TLB
Again mark the PTE to invalid in memory
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VA
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Shortcomings of the previous evaluation

• Emulation code checks the Direct Segment on a L2 TLB miss.
• Cannot accurately determine the cycles saved.
• Does not include the effects on pipeline timing from adding 

comparisons to the Base and Limit registers
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Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket                                                                             
• OS support                                                                                                                   
• Lessons learned                                                                                                              

RISC-V Ecosystem successes and challenges.
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Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket                                                                             
• OS support                                                                                                                   
• Lessons learned                                                                                                              

RISC-V Ecosystem successes and challenges.
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Hardware Support in Rocket Core
• Added CSR registers - Supervisor Direct Segment Base (SDSB), Supervisor Direct 

Segment Limit (SDSL), and Supervisor Direct Segment Offset (SDSO) to store the 

base, limit and offset.

• The least significant bit of SDSL is the enable bit, to enable/disable Direct Segments 

on a per-process basis.

• Direct Segment lookup performed on a TLB miss. This was chosen because of the 

ease of integrating the Direct Segment lookup into the existing TLB unit in Rocket.
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Changes made to the TLB unit in Rocket

• If TLB miss and DS enabled then check if Virtual Address lies in between 
base and limit.

• We also check the protection bits in the Limit register.
• If Direct segment lookup successful compute Physical address by adding 

offset to Virtual Address.
• If Direct segment lookup unsuccessful set the ds_miss signal
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Changes made to the TLB unit in Rocket

s_ready s_request s_wait s_wait_inv

TLB 
request

PTW resp
(refill TLB)

Req && 
tlb_miss

sfence

PTW req
ready

sfence

PTW req ready 
&& sfence

&& ds_miss
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Outline

• Design choices for Direct Segment Hardware.
• Hardware support in Rocket                                                                             
• OS support        
• Lessons learned                                                                                                              

RISC-V Ecosystem successes and challenges.
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OS Support – RISC-V Linux kernel

Create contiguous physical and virtual memory region
• Reserve physical memory at startup – Contiguous Memory allocator.

dma_contiguous_reserve(phys_addr_t limit); Default is 16MB
• Create Primary region(contiguous range of virtual address) on    

encountering a primary process
• Allocate the reserved CMA region                

*dma_alloc_from_contiguous(struct device *dev, int count, unsigned int 
align); 
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OS Support – RISC-V Linux kernel

Setup Direct Segment registers
• BASE = Start VA of Direct Segment
• LIMIT = End VA of Direct Segment
• OFFSET = BASE – Start PA of Direct Segment
• Save and restore register values as part of process metadata on context-

switch
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Design Methodology

Spike RISC-V ISA Simulator
• Prototype of Direct Segments modified the walk() function.
• Tested with custom RISC-V assembly tests that set up primary regions.

RISC-V ISA Qemu
• Implement Direct Segments by modifying the get_physical_address() 

function.
• Chose Qemu because of the ease of testing RISC-V Linux Kernel changes.
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Design Methodology

Direct segment logic and RISC-V linux kernel changes were tested on Spike 
and Qemu first because of the challenges faced with Verilator.

Challenges with Verilator
Very slow booting the linux kernel takes ~ 1 day.
Lack of useful debug prints in Verilator.
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Lessons Learned
RISC-V Ecosystem Successes
• Well defined instruction-set
• Ease of configuring Rocket
• Plenty of Simulators 
• RISC-V assembly test suite.

RISC-V Ecosystem Challenges
• The rapid pace of development within the RISC-V ecosystem
• Documentation across RISC-V projects either insufficient or missing.

RISC-V Linux Kernel Challenges
• Only basic support in RISCV Linux
• kernel was constantly under development
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RISC-V Ecosystem Successes

• Well defined instruction-set with ease of adding new 
registers and instructions.

• Ease of configuring Rocket(Soc Generator).
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RISC-V Ecosystem Successes

• Plenty of Simulators –
Spike, RISC-V Qemu, Verilator.

• Comprehensive RISC-V assembly test suite.
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RISC-V Ecosystem Challenges

The rapid pace of development within the RISC-V ecosystem 
posed a challenge to successfully implement and build 
Direct Segment hardware.
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RISC-V Ecosystem Challenges

• Lack of comments explaining the flow in a particular unit 
and across multiple units in Rocket.

• Documentation across RISC-V projects either insufficient 
or missing.
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RISC-V Linux Kernel Challenges

• Basic support of RISC-V added to Linux kernel 4.15 sufficient 
to boot and not much else.

• Memory Hotplug support not present hence we had to find 
an alternative(CMA).
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RISC-V Linux Kernel Challenges

• RISC-V Linux kernel was constantly under development.
• Obtaining the right version of the kernel which would boot on 

Qemu and Verilator was difficult.
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Conclusion

• RISC-V is an excellent platform for virtual memory research.
• Well defined ISA, Open source implementation aid research
• Call for more engagement for virtual memory research.
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Future Work

• Getting the Kernel changes working on Verilator.
• Measure the timing impact of adding the extra logic.
• Impact of alternative design choices.

34



35

Thank You 
&

Questions?


