
Flexible Timing Simulation of RISC-V Processors with Sniper
Neethu Bal Mallya

National University of Singapore
Singapore

neethu@comp.nus.edu.sg

Cecilia Gonzalez-Alvarez
Ghent University

Belgium
Cecilia.GonzalezAlvarez@ugent.be

Trevor E. Carlson
National University of Singapore

Singapore
tcarlson@comp.nus.edu.sg

ABSTRACT
RISC-V has become an important option for both academia and
industry when considering new microprocessor designs. The open
instruction set allows designs to be tailored for next-generation
processor goals.

Sniper is a next-generation parallel multicore simulator, which
allows trading-off simulation speed for accuracy with a range of
simulation options. Combining flexibility with ease of use allows
computer architects to use it for the evaluation of next-generation
microarchitectural features.

This work presents an extended version of Sniper which enables
support for instruction set architecture (ISA) flexibility and intro-
duces support for RISC-V. In this work, we provide a detailed look
at the updated Sniper infrastructure that can be used for explor-
ing future architectural and microarchitectural directions on the
RISC-V ISA.

CCS CONCEPTS
• Computer systems organization → Reduced instruction
set computing; • General and reference → Performance;

KEYWORDS
RISC-V, Sniper, Simulation Infrastructure
ACM Reference Format:
Neethu Bal Mallya, Cecilia Gonzalez-Alvarez, and Trevor E. Carlson. 2018.
Flexible Timing Simulation of RISC-V Processors with Sniper. In Proceedings
of Second Workshop on Computer Architecture Research with RISC-V (CARRV
2018), 4 pages.

1 INTRODUCTION
Simulation is essential for the design and evaluation of new com-
puter architectures. The Instruction Set Architecture (ISA) is the
interface between hardware and software and is a major portion of
what makes up an architecture. Simulating the performance of the
microarchitectural implementation of an ISA is crucial component
for design space exploration of next-generation designs. Computer
architects, therefore, rely on timing simulation to drive the design
process to quantify potential performance improvements.

RISC-V, the latest RISC-based ISA from Berkeley [6], is dis-
tributed with an open license, a significant departure from main-
stream processor ISAs today. With its straight-forward and modular
ISA, RISC-V was engineered to suit a variety of processors, from
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CARRV 2018, June 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s).

extremely small implementations [2, 14] to large, high-performance
implementations [9].

Building simulation infrastructure to evaluate high-performance
processors demands parallelism and higher levels of abstraction to
keep simulations within a typically limited time budget. Sniper [7] is
a next-generation parallel multi-core open-source simulator based
on interval simulation [13]. It is a fast and flexible simulator which
allows trading off simulation speed for accuracy with a range of
simulation options. Sniper first supported Intel’s x86 ISA, and this
work provides an overview of the proposed extension of the Sniper
infrastructure to flexibly support additional architectures. In this
work, we present an overview of Sniper internals and the updates
needed to support new ISAs. Sniper comes with a number of an-
alytical techniques to ease in the evaluation of processor designs;
enabling new ISAs is one way to improve the flexibility of Sniper
to new dimensions.

This paper is organized as follows. An overview of related work
is presented in Section 2. Section 3 discusses the Sniper simulator
itself, with Section 4 describing the details of our extensions to
support RISC-V. Section 5 describes future directions, and finally
we conclude in Section 6.

2 BACKGROUND
RISC-V is a general purpose architecture that serves as a basis for a
variety of projects from industry and academia [1]. The open ISA
and the collection of related software tools enable easy collaboration
for users to optimize their design for specific functionality. The fixed
user-level ISA also ensures software compatibility and longevity of
the architecture [18].

The existing RISC-V architecture-level software implementations
include ISA functional simulators [4], full system emulators [3]
and timing simulators [15, 17]. The current work explores two
simulators, namely Spike [4] and rv8 [10]. Spike is the reference
RISC-V ISA functional simulator. It serves as a reference model and
can be extended to add new instructions. The rv8 simulator is an
additional RISC-V instruction set simulation suite comprised of a
high performance x86-64 binary translator, a user mode simulator,
a full system emulator, and an ELF binary analysis tool.

Sniper [7, 8] is a parallel multi-core simulator based on mecha-
nistic core models. Sniper provides a range of flexible simulation
options to explore a variety of different homogeneous and hetero-
geneous multicore architectures, as well as a Python-based runtime
environment that allows for analysis and simulator control.

In the original execution-driven simulation mode, Sniper runs
as a tool in Intel’s Pin [16] dynamic instrumentation framework to
produce timing results for the target microarchitecture. In the stan-
dalone replay mode, Sniper can be used for collecting and playing
back instruction traces. The Sniper instruction trace format (SIFT)
files are collected and stored on disk (in the case of single-threaded



CARRV 2018, June 2018, Los Angeles, CA, USA N. Mallya et al.

applications) or generated on the fly and used for bi-directional
communication between the frontend and backend Sniper com-
ponents. The details of the SIFT-based replay mode is discussed
in Section 3. This alternative mode can be used to run multiple
single-threaded and multi-threaded workloads on a single timing
simulator instance. It is this SIFT-based connection that allows for
the use of a variety of tools to act as the Sniper functional frontend,
which is explored in this work to port RISC-V architecture to Sniper.

3 SNIPER OVERVIEW
3.1 Software Components
This section provides a high-level description and organization of
Sniper internals. The main components of the Sniper simulator
include the frontend, SIFT traces and backend. Figure 1 shows an
overview of Sniper’s internals.

Frontend. The functional frontend of Sniper supports different
tools that can be re-modeled as bi-directional SIFT trace recorders.
This component collects the application’s dynamic instruction state
that connects to a standalone Sniper timing instance. Typically,
this is done with binary instrumentation tools such as Pin, but
instruction set simulators allow for cross-ISA evaluation. Its main
components are:

• Control: Module that opens and closes the communication
files (SIFT) and changes the instrumentation mode between
fast-forwarding, warmup and detailed simulation. For in-
stance, if only a region of interest (ROI) in the application
is to be simulated in detail, the code sections outside of the
ROI could be simulated in functional cache warming mode
(where the memory subsystem is warmed before ROI execu-
tion) or could be fast-forwarded without cache warming.

• Instruction instrumentation callbacks: Module that inter-
cepts each executed instruction. It is responsible of count-
ing instructions in fast-forward mode, sending instruction
information required by the SIFT format in detailed instru-
mentation mode, and handling Magic Instructions (special
instructions that do not modify the architectural state of the
processor but are used by the application code to communi-
cate with the Sniper backend. e.g. start and end ROI).

• System call instrumentation: Module for the interception of
system calls to let Sniper backend simulate them.

• Thread instrumentation: Module that intercepts the creation,
synchronization and termination of threads.

Sniper Instruction Trace File Format (SIFT). SIFT is a trace file
format developed for use with Sniper which contains the dynamic
instruction stream generated by the frontend. The format describes
instruction execution order, but also contains additional dynamic
information (like memory addresses) that are needed for detailed
timing simulation.

Depending on Sniper’s simulation mode, the traces can be stored
for later use, or used immediately. In the execution-driven simula-
tion mode, Sniper’s backend consumes the traces generated by the
frontend in real time, and therefore they are not stored. However,
in the standalone replay mode, SIFT traces can be recorded and
stored. These traces can be later executed with Sniper backend to
obtain performance estimates.

Scheduler and Backend. This is the main component of the timing
simulator. The configurable thread scheduler controls and maps
program execution to the simulating cores. Each application thread
in the original program will have a matching thread in the Sniper
backend. In the case of multi-program workloads, each application
has a dedicated thread in the backend. The core models estimate
thread progress and the cache hierarchy and branch predictors are
modeled by the execution-driven performance models.

3.2 Modeling Abstractions
Sniper uses a number of abstractions that provide more direct
control, or simplify its implementation.

Core abstractions. Sniper currently provides two high-abstraction
core models based on interval simulation [12, 13]. The simulator
supports the original interval analysis-based version [7] as well
as the instruction-window (IW) centric model [8] that allows for
modeling additional restrictions (and provides higher accuracy) of
industry processor designs. These mechanistic modeling techniques
provide a more accurate representation of the core timing.

Perfect Memory Dependence Prediction. Perfect memory depen-
dence prediction is something that is currently not possible to do
on a single-pass, execution driven simulator. Currently, Sniper sup-
ports perfect memory dependence prediction, and does not limit
forward progress because of imperfect prediction of memory de-
pendencies. To support imperfect memory dependence prediction,
we will require the implementation of the dependence prediction
unit, and will need to adding false dependencies and additional
execution delays caused by mispredictions of this prediction unit
to simulate the slowdown present in the hardware.

Operating System Emulation. Operating System emulation allows
for an abstract understanding of the application. A variety of OS
wakeup scenarios are presented and this allows for abstract system
modeling in Sniper.

4 IMPLEMENTATION
The improvements to Sniper and the corresponding tools were
based on recent versions of Sniper, Spike and rv81.

Frontend. Two of the existing RISC-V simulators, namely rv8
and Spike, were updated to support SIFT generation. The Spike
simulator and the user mode x86-64 binary translator (rv-jit)
provided by rv8 simulation suite is explored in this work as the
dynamic instrumentation frontend of Sniper.

The Sift::Writer class was used to generate the traces in
these functional simulators. The dynamic information - memory
addresses for loads and stores, branch directions (taken/not taken),
and executed/masked information for predicated instructions are
passed through the Instruction() function. Static instruction in-
formation is obtained through the getCode callback which needs to
be provided in the Sift::Writer constructor. The getCode func-
tion copies the requested range of the instruction memory into
Sift::Writer. This copy of instruction binary can be used at the

1The versions of the tools used are: Sniper(v6.1), Spike (2dbcb01ca1c026b8) and rv8
(7fbe9fbac87365ac)



Flexible Timing Simulation of RISC-V Processors with Sniper CARRV 2018, June 2018, Los Angeles, CA, USA

Sniper Frontend Sniper Backend

SIFT 1

SIFT 2

SIFT M-1

events thread 1

events thread 2

events thread M-1 Th
re

ad
 s

ch
ed

ul
er

N
oC

Core model 1

Core model 2

Core model M-1

L1

L1

L1

SIFT Mevents thread M Core model M L1

Sniper 
Instruction 

Trace Format 
pipes

Core 
performance

models

L2

L2

Cache 
performance

models
… … …

Emulation / Binary 
Instrumentation

Decoder 
library

Figure 1: Sniper Internals. Shaded modules represent the main changes applied to port Sniper to a new architecture.

backend decoder to disassemble the instruction and derive static
information.

SIFT. The SIFT format was designed at a high-level and no major
modifications were needed to the data format. The SIFT traces from
rv8/Spike were used to run Sniper in replay mode, but simultaneous
generation and consumption of traces are also supported.

Backend. The Sniper backend is quite flexible with respect to in-
structions, dependencies and the representation ofmicro-operations.
But there are a number of components that needed to be updated
to support the alternative microarchitectures.

• Decoder Library Sniper uses a series of architectural agnos-
tic methods to implement the decoding phase of the pro-
cessor. A flexible decoder format was added in the back-
end to determine the static instruction information. To sup-
port the new microarchitecture, sub-classes for Decoder
and InstructionDecoded were created and all the meth-
ods were implemented.

• Core Model The parameters like description of ports / func-
tional units, latencies and branch prediction model were
updated in the Sniper Core Model.

• Configuration files The architectural parameters like details
of memory hierarchy are configurable in runtime. These pa-
rameters were adapted to the target architecture implemen-
tation. A new configuration file was also added to the stack-
able configuration options of Sniper to resemble a BOOM [9]
processor2.

5 CURRENT IMPLEMENTATION AND NEXT
STEPS

Our current implementation allows for a flexible architecture base,
with lower-level customization, similar to ASIM [11]. Nevertheless,

2We used the default BoomConfig from http://github.com/ccelio/boom-template
(ad2412bd19c9dd7d)

our simulation platform occurs at a higher level than ASIM or gem5,
to allow for more abstract micro-architecture implementations (per-
fect branch prediction and memory dependence prediction).

Our next steps include comparison with timing simulators to
provide an understanding of which features need to be provided in
order to maintain high accuracy when simulating processors such
as the RocketChip [5] and BOOM [9] processor cores.

6 CONCLUSION
This work presented an infrastructure extension of Sniper multi-
core simulator to enable multi-architectural support. We present
an overview of the updates needed to flexibly support new ISAs on
Sniper, and the result is a working simulator that can be used for
exploring future architectural developments on RISC-V. Our next
steps are to improve the features of Sniper to allow for a detailed
comparison with cycle-level processor implementations.

ACKNOWLEDGEMENTS
This research was supported by a grant from the Singapore Min-
istry of Education Academic Research Fund Tier 1. Additional sup-
port is provided by the European Research Council (ERC) Proof-of-
Concept Grant No. 713632.

REFERENCES
[1] 2018. LowRISC Foundation Members Directory. Available at

https://riscv.org/membership.
[2] 2018. LowRISC Homepage. Available at http://www.lowrisc.org.
[3] 2018. RISC-V QEMU. Available at https://github.com/riscv/riscv-qemu.
[4] 2018. RISC-V Spike. Available at https://github.com/riscv/riscv-tools.
[5] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-

colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html


CARRV 2018, June 2018, Los Angeles, CA, USA N. Mallya et al.

[6] Krste Asanović and David A. Patterson. 2014. Instruction Sets Should Be Free: The
Case For RISC-V. Technical Report UCB/EECS-2014-146. EECS Department, Uni-
versity of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-146.html

[7] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring
the Level of Abstraction for Scalable andAccurate ParallelMulti-Core Simulations.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). 52:1–52:12. http://dx.doi.org/10.1145/
2063384.2063454

[8] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM Trans-
actions on Architecture and Code Optimization (TACO) 11, 3, Article 5 (Aug. 2014),
25 pages. https://doi.org/10.1145/2629677

[9] Christopher Celio, David A. Patterson, and Krste Asanović. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Parame-
terized RISC-V Processor. Technical Report UCB/EECS-2015-167. EECS Depart-
ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-167.html

[10] Michael D. Clark and Bruce Hoult. 2017. rv8: a high performance RISC-V
to x86 binary translator. In First Workshop on Computer Architecture Research
with RISC-V (CARRV). Boston, MA, USA. https://carrv.github.io/2017/papers/
clark-rv8-carrv2017.pdf

[11] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha
Manne, Shubhendu S. Mukherjee, Harish Patil, Steven Wallace, Nathan Binkert,
Roger Espasa, and Toni Juan. 2002. Asim: A Performance Model Framework.
Computer 35, 2 (2002), 68–76. https://doi.org/10.1109/2.982918

[12] Stijn Eyerman, Lieven Eeckhout, and James E. Smith. 2007. Studying Compiler-
Microarchitecture Interactions Through Interval Analysis. In Proceedings of the
16th International Conference on Parallel Architecture and Compilation Techniques

(PACT). IEEE Computer Society, Washington, DC, USA, 406–422. https://doi.
org/10.1109/PACT.2007.70

[13] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. 2010. Interval Simulation:
Raising the Level of Abstraction in Architectural Simulation. In Proceedings of the
16th IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 307–318. https://doi.org/10.1109/HPCA.2010.5416636

[14] Jan Gray. 2016. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator
Accelerator. In Proceedings of the 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). 17–20. https:
//doi.org/10.1109/FCCM.2016.12

[15] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanović. 2017. FireSim: Cycle-Accurate Rack-Scale System Simulation
using FPGAs in the Public Cloud. In 7th RISC-V Workshop. Milpitas, CA, Novem-
ber.

[16] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). 190–200. https://doi.org/10.1145/1065010.1065034

[17] Alec Roelke and Mircea R. Stan. 2017. RISC5: Implementing the RISC-V ISA in
gem5. In First Workshop on Computer Architecture Research with RISC-V (CARRV).
Boston, MA, USA. https://carrv.github.io/2017/papers/roelke-risc5-carrv2017.
pdf

[18] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2016.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1. Technical
Report UCB/EECS-2016-118. EECS Department, University of California, Berke-
ley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1145/2063384.2063454
https://doi.org/10.1145/2629677
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://carrv.github.io/2017/papers/clark-rv8-carrv2017.pdf
https://carrv.github.io/2017/papers/clark-rv8-carrv2017.pdf
https://doi.org/10.1109/2.982918
https://doi.org/10.1109/PACT.2007.70
https://doi.org/10.1109/PACT.2007.70
https://doi.org/10.1109/HPCA.2010.5416636
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1145/1065010.1065034
https://carrv.github.io/2017/papers/roelke-risc5-carrv2017.pdf
https://carrv.github.io/2017/papers/roelke-risc5-carrv2017.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

	Abstract
	1 Introduction
	2 Background
	3 Sniper Overview
	3.1 Software Components
	3.2 Modeling Abstractions

	4 Implementation
	5 Current Implementation and Next Steps
	6 Conclusion
	References

