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ABSTRACT
Page-based virtual memory has been ubiquitous for decades and
provides a secure way to manage scarce physical memory. But, with
increasing memory sizes, paging may no longer be a good idea.
Past analysis shows that big-memory workloads can spend 5%-50%
of execution cycles on TLB misses. Previously proposed Direct
Segments remove TLB miss overhead by mapping a part of pro-
cess’s virtual address space directly to contiguous physical memory.
However, Direct Segments were evaluated using a simple model
based on counting TLB misses, and hence the full architectural
impacts are not known.

We a�empt an implementation of Direct Segments on a RISC-V
Rocket core, with so�ware support in the Linux kernel. We add
three supervisor level registers—base, limit and o�set—and modify
TLB miss handling to create TLB entries automatically for addresses
within the Direct Segment without a page-table walk. We modify
the RISC-V Linux kernel to reserve a region of physical memory
and allocate a contiguous region of virtual address space to support
Direct Segments and to change segment registers when changing
address spaces.

We found that implementing Direct Segments for RISC-V forced
us to further re�ne the segment interface, and consider where best
in the translation path to implement segments Our prototype of
Direct Segment consists of about 50 lines of Chisel code added to
the Rocket core and about 400 lines of code added to the RISC-V
Linux kernel.
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1 INTRODUCTION
Page based virtual memory, �rst implemented in the Atlas sys-
tem [7], has largely been unmodi�ed since the late 1960s when
Translation-lookaside bu�ers (TLBs) were proposed. However, the
usage of virtual memory by applications has changed signi�cantly
because of the growing physical memory capacities. Servers today
are equipped with terabytes of RAM. For example, Windows Server
2016 supports up to 24 terabytes of physical memory, which is 6
times more than its predecessor. �is growth in physical memory is
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expected to continue with improvements in memory technologies,
especially non-volatile memory [11].

With an increase in physical memory sizes a number of appli-
cations use vast in-memory data like key-value stores in Mem-
cached [5], in-memory databases [9, 12]. A previous analysis [2]
shows that these applications spend 5%-50% execution cycles on
TLB misses, which can take up to hundreds of cycles and increase
energy consumption [3].

Direct Segments [2] help alleviate the TLB miss overhead in-
curred in these big-memory workloads. �e main idea behind
Direct Segments is to directly map a contiguous region of virtual
memory to a contiguous region of physical memory. �ree hard-
ware registers Base, O�set, and Limit are used to perform the map-
ping. A virtual address lying in between base and limit bypasses
the TLB and is instead translated to a physical address by adding
an o�set. Virtual addresses that do not fall between base and limit
are mapped using conventional page-based virtual memory. �e
authors [2] emulated Direct Segments entirely in so�ware by us-
ing the memory-hotplug feature to reserve a continuous region of
physical memory and by triggering a fake page fault on TLB misses
to check if the miss address falls in the Direct Segment region. �is
implementation is incorrect since it a�ects the contents of TLB.

�is leads to our motivation of implementing Direct Segments
in hardware and accurately measure the true bene�ts of using
virtual memory that is directly mapped to a contiguous region of
physical memory. RISC-V based processors have become a popular
platform for architecture research because of their simple, fast and
open-source design. We implement our design on a RISC-V based
Rocket Chip [1] which leverages the Chisel hardware construction
language to provide a library of sophisticated, highly parameterized
generators which make up the synthesizable System-on-Chip (SoC).
We add the three registers base, o�set and limit to the Rocket Core
and modify the TLB unit to perform a check on a TLB miss to see if
the virtual address lies in between base and limit and add the o�set
to it to get the Physical address. TLB entries are created for the
virtual addresses which are translated using Direct Segments.

We also modify the RISC-V Linux kernel to support Direct Seg-
ments. We reserve a contiguous region of physical memory using
the contiguous memory allocator [8]. When a process uses a Direct
Segment we allocate a contiguous region of virtual memory and
populate the base, limit and o�set registers. To develop assembly
tests and test the kernel changes we implemented the design �rst
on Spike (RISCV ISA simulator) [13] and RISCV-Qemu [4].

�e rest of the paper is organized as follows. Section 2 describes
the background speci�cally the main idea behind Direct Segments
and how it was implemented and evaluated in prior work. Section
3 explains our design and implementation. Section 4 presents the

http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn


CARRV 2018, June 2018, Los Angeles, CA USA Nikhita Kunati and Michael M. Swi�

methodology adopted to develop and evaluate our design. Sec-
tion 5 presents the lessons learned from our implementation and
evaluation of Direct Segments. Section 6 concludes this paper.

2 BACKGROUND
Virtual memory has been an active research area for a long time
with e�cient TLB mechanisms being proposed and support for large
pages added for various architectures like MIPS, Alpha, UltraSPARC,
PowerPC, and x86. Prior work has produced many proposals to
reduce TLB misses (e.g., clustered TLBs [10]). We are focusing on
Direct Segments proposed in prior work [2] that enables fast and
e�cient address translation of big memory workloads by treating
a some portions of virtual address space as segments and page
mapping the rest.
Hardware support for Direct Segments. In order to enable fast
translation for part of a process’s address space that does not ben-
e�t from page-based memory, previous work introduces Direct
Segments, which map a contiguous region of virtual address space
directly to a contiguous region of physical address space. �e vir-
tual address region can be of any size and and requires only minimal
hardware regardless of its size. Virtual addresses that do not fall
in this contiguous region are page mapped using the conventional
technique. �e hardware needs three registers to support Direct
Segments

• Base holds the start address of the contiguous virtual ad-
dress region mapped through Direct Segment

• Limit holds the end address of the contiguous virtual ad-
dress region mapped through Direct Segment.

• O f f set holds the start address of contiguous physical ad-
dress region backing the Direct Segment minus the value
Base.

�e address translation involves the following steps. If the virtual
address V falls in the contiguous virtual address range ( Base ≤
V < Limit ) the hardware will return physical address asV +O f f set .
A given virtual address can be translated using Direct Segment or
page mapping but not both. �e OS is responsible for populating
the Base, Limit and O�set registers.

So�ware support for Direct Segments. �e OS provides the
abstraction of a primary region to applications(primary processes),
which allows them to specify a region of memory that does not
bene�t from paging and can use a Direct Segment. In order to
support primary regions two things need to be done. First, the OS
needs to reserve a contiguous region of physical memory which
is usually done at boot time. Second, the OS needs to provision a
contiguous virtual address range. It does this during the creation
of a process by reserving a portion for memory allocations in the
primary region. �is partition should be large enough to encompass
the largest possible primary region.

Figure 1 shows the virtual address space of a process with a
primary region and how the physical address space looks in the
presence of both Direct Segments and page-mapped memory. �e
lightly shaded box represents the primary region and the dark
narrow rectangles represent the conventional pages
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Figure 1: Virtual address and physical address space layouts
with primary region.

�e OS is also responsible for se�ing up the Base , Limit and
O f f set registers. When a primary process is found the OS re-
serves a physical memory region and allocates a contiguous range
of virtual addresses. On process context switches, the OS saves and
restores these registers.

Previous Evaluation of Direct Segments. Direct Segments were
emulated in so�ware and by tricking an x86-64 processor into trig-
ger a page fault on every TLB miss using a technique like Bad-
gerTrap [6]. Page tables initially mark all pages invalid. On any
reference to memory the processor will trap, at which time the
emulation code marks the page valid, touches a byte on the page
to add the translation to the TLB, and then marks the page table
entry invalid again. �us, while the page is in the TLB it can be
re-referenced without a fault, but once it leaves the TLB, the page-
walk code will trigger a fault. �e emulation code determines on
each page fault whether the faulting address lies within a Direct
Segment, and then predicts overall performance from the fraction
of TLB misses that would be avoided. �is approach is much faster
than full-system simulation and allows running workloads with
tens of gigabytes of data, but potentially less accurate.
Problems with the previous implementation. �e so�ware
emulation used to evaluate the original Direct Segments proposal
had several inaccuracies that we improve in our work.

• While the original design called for checking for Direct
Segment in parallel to L1 TLB lookup, the emulation code
only checks a Direct Segment on an L2 TLB miss. �us,
addresses in Direct Segments will pollute both L1 and L2
TLBs and many accesses to a Direct Segment will pay the
L2 TLB latency.

• �e emulation code cannot determine how many cycles
would be saved from access to a Direct Segment, as the
CPU may have overlapped other work with a TLB miss
that would now be on the critical path.

• �e work did not include e�ects on pipeline timing from
adding comparisons to the Base and Limit registers.

For these reasons, we developed an implementation of Direct Seg-
ments on RISC-V.
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Figure 2: Logical view of address translation with Direct Seg-
ment Hardware.

3 DESIGN
We implement Direct Segments as described in the previous sec-
tion on a RISC-V based Rocket Chip and add so�ware support by
modifying the RISC-V Linux Kernel.

3.1 Hardware Support in Rocket Core
We use the Berkeley Rocket chip SoC generator and modify it to
create a 64-bit RISC-V core that supports Direct Segments. �e
Rocket Chip generator supports both an in-order Rocket core as
well as an out-of-order BOOM core, and both instantiate a common
TLB and page table walker unit. Rocket core has 5 pipeline stages
the I-TLB access happens in the instruction fetch stage and D-TLB
access happens in the data memory access stage.

We prototype Direct Segments only for data memory accesses.
Using the Supervisor level Page Table Register (SPTBR/SATP) as
our model, we add support for three supervisor level registers:
Supervisor Direct Segment Base (SDSB), Supervisor Direct Segment
Limit (SDSL), and Supervisor Direct Segment O�set (SDSO) to store
the base, limit and o�set required for Direct Segment lookup. �e
least signi�cant bit of SDSL is the enable bit, which although not a
big addition was not proposed in the original design and provides
the functionality to enable/disable Direct Segments on a per-process
basis. Bit[1] of SDSL represents the protection bit. If it is set to 1
we set read/write permissions for the direct segment region and
otherwise set read only. Figure 2 shows our hardware design. We
perform the Direct Segment lookup on a TLB miss, unlike the
original design where it was proposed to be done in parallel with
the TLB lookup. We chose this implementation because of the ease
of integrating the Direct Segment lookup into the existing TLB
unit in Rocket. We plan to implement the Direct Segment lookup
in parallel to the TLB lookup, and within the page table walker
unit and compare the performance and timing impact of the three
designs. Our prototype of Direct Segment consists of about 50 lines
of Chisel code added to the Rocket core

We modify the TLB unit in Rocket to check on a TLB miss, if
Direct Segments are enabled (enable bit in SDSL is set), and then
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Figure 3: TLB unit’s state diagram.

check if a given virtual address lies in between the base and limit.
If so, it computes the physical address by adding o�set to virtual
address. We introduce a new signal ds miss which is set if the
Direct Segment lookup is unsuccessful. Figure 3 shows the state
diagram of the TLB unit in Rocket. �e TLB is in state s ready
when there is a translation request(TLB req) or when the Page
Table Walker(PTW) has sent a request to re�ll the TLB, it moves to
s request state when the address request misses in both the TLB
and the Direct Segment look up (ds miss is set). �e TLB is in s wait
state when PTW is ready and is processing a request and TLB is in
s wait invalidate state when a sfence instruction is encountered.

3.2 So�ware Support: RISC-V Linux kernel
We modify the RISC-V Linux kernel to provide two basic function-
alities to support Direct Segments. First, the OS provides a Primary
Region as an abstraction for the application to specify which por-
tion can bene�t from Direct Segments. Second, the OS reserves a
portion of Physical memory and maps to the primary region by
con�guring the Direct Segment registers.
Primary regions are a contiguous range of virtual addresses with

a uniform read-write access permission. We allocate a primary
region when a primary process is detected. �e size of the primary
region is speci�ed by the application with a new system call cre-
ate primary region(). Our prototype employs an “opt-out” policy
where all memory allocations with read-write permissions are put
in the primary region unless explicitly speci�ed by the application.
�is way, all heap allocations and mmap() calls for anonymous
memory are placed in the address region reserved for primary re-
gion unless explicitly requested otherwise by the application with
a �ag to mmap().
Managing the Direct Segment Hardware. �e OS sets up the
Direct Segment hardware by �rst allocating a contiguous region
of physical memory to back the primary region and then it sets
up SDSB, SDSL and SDSO for the hardware to perform Direct
Segment lookup. To make contiguous physical memory available
we use the Contiguous Memory Allocator [8] which allows for
large contiguous allocations by requiring just a few changes to the
kernel code. We use contigous alloc() to reserve memory at boot
time and use dma alloc from contiguous() to allocate CMA memory
for a primary process. When a process requests it, we allocate a
primary region and set up the Direct Segment registers SDSB, SDSL
and SDSO. We also modify the context switch code to save and
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restore these registers. Our prototype of Direct Segment consists
of about 400 lines of code added to the RISC-V Linux kernel.

4 METHODOLOGY
In this section we describe our methodology for implementing
and testing Direct Segments. We �rst implemented the hardware
changes on Spike a RISC-V ISA simulator and developed assembly
tests to test the hardware changes. We then implemented the hard-
ware changes in the existing Rocket Core, and used the Verilator
to run assembly tests and test the Chisel implementation. In order
to test the RISC-V Linux kernel changes we also implemented the
hardware changes in RISC-V Qemu.
Spike is a RISC-V ISA simulator that is a functional model of a
RISC-V processor. We �rst implement the Direct Segment hardware
changes to Spike before Rocket to check the feasibility of our design
and devise some simple tests which can be run and debugged easily
on Spike. We modify the walk() function which is accessed on an
I-TLB or D-TLB miss to perform a direct segment lookup only on
data memory access.
RISC-V Qemu: Qemu is an open source machine emulator capable
of emulating a machine entirely in so�ware using dynamic transla-
tion and supports emulation of multiple architecture including RISC-
V. We modify RISCV-Qemu, speci�cally the get physical address()
function, to perform the Direct Segment lookup before the page
table walk. It checks if the virtual address lies in between base and
limit and if it is computes the physical address as virtual address
+ o�set and return translation success. We implement Direct Seg-
ments in Qemu because of the ease of testing RISC-V Linux Kernel
changes on top of it. Booting the kernel on RISC-V takes a few
seconds as compared to verlilator where it could take hours.

5 LESSONS LEARNED
In this section we describe our experience using the RISC-V ecosys-
tem to implement Direct Segments. Speci�cally, we describe the
RISC-V ecosystems successes as well as the challenges we faced
while using the various components of the RISC-V project.
RISC-V Ecosystem Successes. �e RISC-V ecosystem provides
all the tools necessary to prototype the Direct Segment hardware
well. We were able to start o� from a well de�ned instruction-set
with the ease of adding new registers and instructions. Generating
a RV64 core required modifying a con�guration script. We also
used Spike the RISC-V ISA simulator which enabled fast testing
of our design before we made the necessary hardware changes
to Rocket. �e RISC-V assembly test suite is comprehensive and
serves as a model to develop new tests which simpli�es veri�cation.
�e Verilator which converts the converts Verilog to cycle accurate
C++ model was essential to test the changes we made to the Rocket
Core. We were also able to boot our modi�ed RISC-V Linux kernel
successfully on the Verilator. �e RISC-V ecosystem played an im-
portant role in enabling a �rst year graduate student to implement
an e�cient virtual memory management design in hardware and
develop necessary so�ware for it all in a ma�er of few months.
RISC-V Ecosystem Challenges. Despite the �exibility provided
by the RISC-V ecosystem we faced some challenges. �e most

signi�cant challenge was to successfully build and test all the com-
ponents of the RISC-V ecosystem this was because of the rapid
pace of development both within each RISC-V project and across
the full RISC-V ecosystem. For example, when we started making
changes to the TLB unit of rocket we found that within a month
a newer version of Rocket was released with signi�cant changes
to the TLB unit causing us to redo our implementation. We also
faced issues in �nding the right version of RISC-V kernel that boots
across all the platforms Spike, RISC-V Qemu and Verilator. We
found that documentation across RISC-V projects is either missing
or not su�cient to build a working system. For example, there were
multiple sources listing the steps to build the RISC-V linux kernel
but some of the steps were outdated and resulted in either us failing
to build the kernel or failing to boot it on a speci�c platform.

Obtaining performance results from Rocket using was challeng-
ing due to the lack of performance monitoring tools. Unlike a
simulator that can easily be extended with arbitrary counters, we
implemented performance counters within the Rocket implementa-
tion and write test code to extract the results.

Finally, making changes to existing Rocket code was not trivial
because of the lack of comments explaining the �ow in a particular
unit and across multiple units. Due to the lack of well documented
performance counters we had to add logic in Rocket to enable a
performance counter that measures TLB misses.
RISC-V LinuxKernel Challenges. Kernel support is essential for
any new architecture to enable operating systems research. �ough
basic support for RISC-V was added in Linux Kernel 4.15 it was
su�cient to boot and not much else. For example, it does not sup-
port interrupts thus cannot support devices. We found that porting
kernel code developed for x86 faced unexpected challenges because
of this primitive support for RISC-V in Linux. For example, we
could not reserve physical memory using memory hotplug which
was used for the x86 so�ware prototype because this support was
not present for RISC-V. We hence found an alternative—Contiguous
memory Allocator(CMA). Another challenge we faced was that the
RISC-V Linux kernel was constantly under development and get-
ting the right version of the kernel which would boot on Qemu and
Verilator was di�cult. Had there been coordinated releases of all
components (Qemu, Verilator, Linux, etc.), or at least documented
stable con�gurations, this would have been simpli�ed.

6 CONCLUSION
In this paper we present an implementation of an e�cient virtual
memory—Direct Segments—which can be used along with tradi-
tional page-based virtual memory to reduce the TLB-miss overhead
found in server workloads. To achieve this, we make changes to
the TLB-unit in Rocket and add so�ware support by modifying the
RISC-V Linux Kernel. �e �exibility of the RISC-V ecosystem has
played a major role in enabling our design and implementation of
Direct Segments in a full system with an application execution envi-
ronment. Our preliminary results show that the TLB-Miss overhead
has reduced signi�cantly and we plan to do further analysis on
where to perform the Direct Segment lookup in hardware to get the
best performance. Based on our experience, we believe that RISC-V
is a promising platform for future research on Virtual Memory.
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