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ABSTRACT
The RISC-V ecosystem is becoming an increasingly popular op-
tion in both industry and academia. The ecosystem provides rich
open-source software and hardware tool chains that enable com-
puter architects to quickly leverage RISC-V in their research. While
the RISC-V ecosystem includes functional-level, register-transfer-
level, and FPGA simulation platforms, there is currently a lack of
cycle-level simulation platforms for early design-space exploration.
gem5 is a popular cycle-level simulation platform that provides
reasonably flexible, fast, and accurate simulations. Previous work
has added single-core RISC-V support to gem5. This paper presents
our recent work on simulating multi-core RISC-V systems in gem5.
We first describe our approach to functional and timing validation
of RISC-V systems in gem5. We then evaluate the performance of
the gem5/RISC-V simulator and discuss a design-space-exploration
case study using gem5, the open-source RISC-V software tool chain,
and two popular task-based parallel programming frameworks.

1 INTRODUCTION
RISC-V is an emerging open-source software and hardware ecosys-
tem that has gained in popularity in both industry and academia [2,
11]. At the heart of the ecosystem, the RISC-V ISA is designed to
be open, simple, extensible, and free to use. The RISC-V software
tool chain includes open-source compilers (e.g., GNU/GCC and
LLVM), a full Linux port, a GNU/GDB debugger, verification tools,
and simulators. On the hardware side, several RISC-V prototypes
(e.g., Celerity [4]) have been published. The rapid growth of the
RISC-V ecosystem enables computer architects to quickly leverage
RISC-V in their research.

Hardware modeling and simulation are critical for system design-
space explorations. An ideal model is fast to simulate, accurate,
and easy to modify. However, achieving all three goals in a single
model is difficult (see Table 1). The RISC-V ecosystem provides
functional-level models (e.g., Spike, QEMU), register-transfer-level
(RTL) models (e.g., Rocket, Boom, Ariane), and FPGA models (e.g.,
Rocket Zedboard). Functional-level modeling is fast and easy to
modify, but it does not capture the timing of the target system.
RTL modeling provides cycle-accurate details of the target system
at the cost of being slow to simulate and hard to modify. FPGA
modeling provides both accurate and fast simulations but is even
more challenging to modify owing to lengthy synthesis and place-
and-route times. Cycle-level modeling offers a middle ground that is
easier to modify than FPGA modeling, faster to simulate than RTL
modeling, and more accurate than functional-level modeling. Its
flexibility and performance provide a good platform for early system
design-space exploration. We see a critical need for contributing
open-source cycle-level models to the RISC-V ecosystem.

Time to Modify Time to Simulate Accuracy

FL + + + + − −

CL + + −

RTL − − − + +

FPGA − − + + + +

Table 1: Different Modeling Levels and Their Trade-Offs –
FL = functional-level. CL = cycle-level. “+” and “-” show relative
comparisons between levels.

gem5 is a popular cycle-level simulator that supports various in-
struction sets including x86, MIPS, and ARM. The simulator already
provides a number of processor, cache, interconnection network,
and DRAMmodels. It also offers advanced simulation features such
as fast-forwarding and check-pointing. Previous work has added
single-core RISC-V support to gem5 [13], and our work has focused
on adding multi-core RISC-V support to gem5.

In Section 2, we describe our modifications to gem5 to support
simulating multi-core RISC-V systems. Sections 3 and 4 present our
functional and timing validation of the implementation. In Section 5,
we describe the applications used to evaluate our work. Section 6
shows the performance of gem5. Section 7 presents a small design-
space exploration study on a heterogeneous multi-core system
with two different task-parallel programming frameworks using
the RISC-V implementation in gem5.

2 ADDING MULTI-CORE RISC-V
SUPPORT TO GEM5

In this section, we describe our modifications to gem5 to support
the thread-related system calls (e.g., clone, futex, and exit) and
RISC-V synchronization instructions (e.g., atomic memory oper-
ation, load-reserved, and store-conditional instructions) that are
required to run multi-threaded applications in the simulator.

2.1 System Call Support
gem5 supports twomodes of simulation: full-system (FS) and system-
call-emulation (SE) [3]. In FS mode, applications execute using a
simulated operating system (OS) exactly as they would on a real
system. All system calls are trapped and handled by the simulated
OS. In SE mode, system calls are directly emulated within the sim-
ulator itself. When an application executes a write system call,
gem5 simply invokes a corresponding write system call using the
host machine running the simulator, and no OS code is simulated.
In this work, we focus only on SE mode. The implementation of
system calls in SE mode is mostly ISA-independent, so much of this
code can be directly reused to support RISC-V.
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Each CPU in gem5 has a number of hardware (HW) threads.
When an application executes, each software (SW) thread is mapped
to a particular HW thread. A HW thread maintains its correspond-
ing SW thread’s state including its program counter (PC), its register
values, and whether the SW thread is active. Thread creation, syn-
chronization, and termination are handled through three system
calls: clone, futex, and exit. So to runmulti-threaded applications
in SE mode, we must focus on supporting these three key system
calls. Other thread-related system calls such as gettid, getgid, and
getpid are completely ISA-independent and so are implemented
in gem5 for RISC-V by default.

clone System Call – In Linux, an application spawns a new
thread by calling the clone system call. The new thread can share re-
sources with its parent thread, including the virtual memory space,
file descriptors, and other process attributes. The sharing is speci-
fied through different flags (e.g., CLONE_VM, CLONE_FILES, and
CLONE_THREAD) given to the system call. If the CLONE_CHILD_
CLEARTID flag is set, then when a child SW thread terminates it
should wake up its parent SW thread.

When executing the clone system call in gem5’s SE mode, the
simulator first finds an available HW thread. Pointers to shared
resources (e.g., page table and file descriptor table) are copied from
the calling SW thread to the new one. If non-shared resources (e.g.,
stack space and thread local storage) are pre-allocated, pointers to
these resources will be passed into the clone system call and then
used to initialize the SW thread. Otherwise, gem5 will allocate such
resources on its own. After all necessary attributes and resources
are initialized, gem5 activates the HW thread context, and the new
SW thread starts executing its first instruction. Most of the existing
implementation of the clone system call was leveraged to support
RISC-V. We implemented some RISC-V specific requirements in-
cluding a different system call API and register file initialization
process.

futex System Call – Linux supports OS-level thread synchro-
nization through the futex system call. The system call supports
two operations: FUTEX_WAIT and FUTEX_WAKEUP. When a SW
thread executes the FUTEX_WAIT operation, the SW thread checks
if the value at a given address still matches a given expected value.
If so, the SW thread waits by sleeping. A different SW thread can
execute the FUTEX_WAKEUP operation to wake up one or more SW
threads waiting on a given address. The FUTEX_WAIT_BITSET and
FUTEX_WAKE_BITSET flags enable a SW thread to use a bit map
to control which waiting thread(s) to wake up when performing
the FUTEX_WAKEUP operation. The bit-set flags are commonly
used in some parallel programming frameworks (e.g., OpenMP and
Cilk).

In gem5’s SE mode, each futex address is associated with a list
of waiting HW threads. To execute the FUTEX_WAIT operation,
gem5 puts the calling HW thread into a thread list associated with
a given futex address and then suspends the HW thread. The sus-
pended HW thread becomes idle. When a SW thread executes the
FUTEX_WAKEUP operation on the same address, some HW threads
waiting in the thread list are woken up and re-activated. The im-
plementation of the futex system call is ISA-independent, so we
only needed to modify it to support the bit-set flags to selectively
wake up threads. We also needed to fix a more fundamental issue
in the thread suspension and activation logic used by all gem5

CPU models. More details on our modifications are described in
Section 3.

exit System Call – A SW thread calls the exit system call
to terminate its execution. If the CLONE_CHILD_CLEARTID flag
was used to clone the child SW thread, then the parent SW thread
needs to be woken up.

In gem5’s SE mode, when a SW thread executes the exit system
call, gem5 cleans up all micro-architectural and architectural state
belonging to the thread in the CPU pipeline. It then detaches the SW
thread from its current HW thread, and the HW thread becomes
available for future use. If waking up its parent thread is required,
gem5 performs the FUTEX_WAKEUP operation on an address given
to the clone system call that was used to create this SW thread.

2.2 Synchronization Instruction Support
The RISC-V “A” standard extension for atomic instructions sup-
ports two types of synchronization instructions: atomic memory
operations (AMO) and load-reserved/store-conditionals (LR/SC) [11].
RISC-V supports the release consistency model and a memory fence
instruction (FENCE). These instructions and the memory model are
used to synchronize threads through shared variables. Although
they have been recently implemented in gem5, their functionality
was only validated for single-core simulations [13]. In multi-core
simulations, we found that some executions using synchronization
instructions implemented in the previous work could lead to race
conditions and/or thread starvation. We describe our modifications
to the implementation to fix these issues.

AMO Instructions – AMO instructions (e.g., amoadd) perform read-
modify-write operations atomically to a given address. They appear
to be executed in a single step with respect to all threads.

There are two ways to implement AMO instructions: (1) locking a
target cache line before performing the operation using the CPU
pipeline; and (2) embedding AMO arithmetic logic units (ALU)
inside private L1 caches [12]. We chose the second approach to
implement AMO instructions in gem5. We modified its cache model
to support executing ALU operations directly in caches. We added a
newmemory request type called atomic in addition to load and store.
Atomic requests are treated as if they were normal store requests
except that no data-forwarding between an atomic request and a
subsequent load request to the same address is allowed. This is due
to the fact that atomic requests carry no valid data until they are
executed in caches. Similar to store memory requests, an atomic
request requires exclusive access to its target cache line through
the cache coherence protocol before updating the line in an L1
cache. The cache then executes the request’s ALU operation and
updates the cache line in one step. The exclusive access and one-
step execution inside the cache guarantees the atomicity of the AMO
instruction. The previous value at the target address is returned
to the executing CPU pipeline after the atomic memory request is
completed in the cache.

LR/SC Instructions – An LR instruction reserves exclusive ac-
cess to a shared address. An SC instruction performs an update to
the value at the shared address only if there is still a valid reserva-
tion on the address. The pair of instructions is commonly used to
perform lock-free atomic read-modify-write operations. Using an
LR/SC instruction pair to synchronize multiple threads is prone to
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aq rl Ordering Semantics Micro-op Sequence
0 0 Relaxed AMO/LR/SC
0 1 Releasing fence; AMO/LR/SC
1 0 Acquiring AMO/LR/SC; fence
1 1 Sequentially consistent fence; AMO/LR/SC; fence

Table 2: Micro-Operation Sequences for AMO and LR/SC In-
structions – Each sequence corresponds to a configuration of aq
and rl bits set in the instructions and a memory ordering rule in
the release consistency model.

livelock. An SC instruction executed by thread Amay never succeed
if an LR instruction executed by another thread continually invali-
dates thread A’s reservation. RISC-V guarantees an SC instruction
will eventually succeed under certain constraints on the number
and type of instructions between an LR/SC pair [11].

The implementation of LR/SC in gem5 maintains a per-HW-
thread list of reserved addresses.When an LR instruction is executed
in a HW thread, a snoop request is placed on a cache coherence
bus to revoke any reservation of the instruction’s target address.
Once all reservations in other HW threads are invalidated, the
address is pushed into the requesting thread’s reservation list. Later,
when executing an SC instruction, the HW thread checks if the
instruction’s target address still exists in the thread’s reservation
list. If so, the SC instruction succeeds, and the address is popped off
the list. Otherwise, the instruction fails. If a HW thread receives a
snoop request for an address, it revokes any matched entry in its
own list. We made the reservation list structure private for each
HW thread to correctly support LR/SC in multi-core simulations.
To implement RISC-V’s livelock freedom guarantee, we modified
the L1 cache to hold off processing LR snoop requests to an address
for a bounded period of time if there is an active reservation on the
address.

Release Consistency Model – RISC-V supports a release con-
sistency model [6]. Under the model, memory operations are free
to be re-ordered unless there is a memory fence (FENCE) instruction
between them. RISC-V also supports two memory ordering flags
(acquire, release) encoded in two corresponding bits (aq, rl) inside
AMO and LR/SC instructions. The acquire flag prevents memory oper-
ations after an AMO or LR/SC instruction from being re-ordered with
respect to the instruction. The release flag prevents memory oper-
ations before an AMO or LR/SC instruction from being re-ordered
with respect to the instruction.

The RISC-V FENCE instruction is implemented in the current
version of gem5. Its implementation prevents memory instructions
after the FENCE instruction from being issued until all memory in-
structions before the FENCE instruction retire. To implement the
memory ordering bits embedded in AMO and LR/SC instructions,
we used gem5’s micro-operation feature that allows breaking an
instruction into a sequence of smaller micro-operations to be exe-
cuted by the CPU pipeline. Depending how aq and rl are set in an
AMO or LR/SC instruction, we inserted a fence micro-operation(s)
before and/or after the AMO or LR/SC instruction. Table 2 shows
all four configurations of aq and rl bits, their memory ordering
semantics, and their corresponding sequences of micro-operations.

3 FUNCTIONAL VALIDATION
In this section, we describe our functional validation of the RISC-V
implementation in gem5. We first show a major challenge with us-
ing gem5’s current regression tests to validate the implementation.
We then explain our approach and describe how we applied it to
validate the functionality of thread-related system calls and RISC-V
instructions.

Challenge – Although gem5 already has a regression test suite
including some C/C++ benchmarks and their reference outputs,
using these tests to debug a complex CPU model is challenging. A
C/C++ benchmark, even a very simple one, can compile to thou-
sands of instructions. Since a compiler can optimize the benchmark,
the generated assembly code is often hard to understand. When
the benchmark fails, tracing the problem through the large num-
ber of instructions is difficult and time-consuming. Debugging a
multi-core CPUmodel that runs multi-threaded applications is even
worse. A problem can appear to happen in a code region that is
far from where the actual bug occurs. Therefore, we need a better
approach to validate functionality in gem5.

Approach – Instead of using C/C++ benchmarks to validate a
model in gem5, we used extensive, well-crafted assembly and low-
level C unit tests. Each small test written in assembly code stresses a
single instruction or system call without extra complexities coming
from any C/C++ library and compiler.We used low-level C unit tests
to discover missing functionality that is used in real libraries (e.g.,
GNU pthread library). By thoroughly testing an implementation
at a low level, we can be more certain about the correctness of each
instruction and system call.

Implementation – We applied the approach to validate func-
tionality of the single-threaded and multi-threaded implementation
of RISC-V in gem5.

For the single-threaded implementation, we leveraged an exten-
sive assembly test suite in the open-source RISC-V tool chain1. The
RISC-V test suite is designed to run on bare metal systems without
any OS support, and it communicates to a host machine to inform
test outputs. However, gem5 simulates systems with OS support,
so to integrate the suite into gem5, we added a new testing envi-
ronment that ignores the initial to-host communication setup in
the original suite and calls the exit system call with an exit status
number denoting which test case fails.

For the multi-threaded implementation, we built our own assem-
bly and low-level C unit tests. Since we do not want to have the
complexity of threading libraries (e.g., GNU pthread library) in
our assembly tests, we wrote a minimal threading library written
in assembly code to simplify developing new multi-threaded as-
sembly tests. The library includes minimal functionality to create,
synchronize, and terminate threads using the clone, futex, and
exit system calls. We first validated the implementation of these
system calls. Then we built new tests using the minimal library to
validate the implementation of AMO and LR/SC instructions on a
multi-core system. Themulti-threaded tests are focused on inducing
potential race conditions and other synchronization bugs that are
impossible to detect in single-threaded tests. Low-level C unit tests
were built to detect missing functionality used in the GNU pthread

1https://github.com/riscv/riscv-tests
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library. Each unit test is focused on a single pthread function (e.g.,
pthread_create, pthread_join, and pthread_mutex_lock).

Using our approach, we were able to detect and fix numerous
bugs in gem5’s CPU models efficiently. Some of the bugs are related
to incorrect suspension and resumption of HW threads in a CPU
pipeline, which would be hard to reveal, trace, and fix using only
C/C++ benchmarks. Some other bugs happened in the out-of-order
CPU pipeline’s memory disambiguation unit and load/store queue.
Without the ability to control interactions between memory in-
structions, it would be challenging to reproduce and trace such
memory-related bugs. There were a couple of bugs related to incor-
rect interpretation of the clone system call’s API. They were easily
detected in our simple assembly tests.

4 TIMING VALIDATION
Detailed CPU models in gem5 are meant to be used as generic mod-
els and are not validated against an actual cycle-accurate micro-
architecture [9]. Users of themodels often need to re-configure them
and validate their performance against a targetmicro-architecture [7].
In this section, we first explain the challenges involved with timing
validation for the RISC-V implementation in gem5, before describ-
ing a general approach for such timing validation. We then show an
example of how we validated a multiplier unit in gem5’s in-order
CPU model against the multiplier unit in the Rocket chip.

Challenge – Timing or performance validation of a CPU model
in gem5 is often performed using C/C++ benchmarks (e.g., SPEC
CPU2006) [7]. Performance counters (e.g., the total number of cy-
cles and instructions) are used to compare the performance of the
simulated system vs. the target system. There are two main prob-
lems with this approach. First, it is often challenging to detect a
performance bug. Since this approach relies on very general per-
formance statistics of high-level benchmarks, different simulation
errors and performance bugs can together skew the overall per-
formance results [9]. Second, parameters of a model can be tuned
to make the model appear to have correct timing behavior only
in a small set of benchmarks [9]. When running the model with a
benchmark that heavily uses HW units that are not validated, the
model’s performance may become incorrect.

Approach – Instead of using C/C++ benchmarks to validate
the performance of a whole CPU model in gem5, we argue for an
incremental validation approach using assemblymicro-benchmarks.
Each micro-benchmark is carefully designed to validate a specific
HW unit (e.g., branch predictor, multiplier, decoder, and memory
load/store queue) using a sequence of instructions that heavily use
the target unit. The sequence’s performance is measured through
HW cycle and instruction counters. Some techniques including
cache warm-up and loop unrolling can be applied to minimize
interference from other HW units.

Implementation – In this work, we applied the approach to
validate the multiplier’s performance in gem5’s in-order CPUmodel
against the multiplier in a Rocket chip. We configured the Rocket
chip generator to generate an in-order CPU model that has an
8-cycle iterative multiplier. We wrote a micro-benchmark that exe-
cutes 500 mul instructions back-to-back with minimal read-after-
write dependencies. We did not use branch instructions to loop
through the sequence to prevent the branch predictor from affecting

Metrics gem5’s In-Order Model Rocket In-Order Model

DInst 503 503
CPU Cycle 5010 5003
CPI 9.96 9.95

Table 3: Timing Validation of the Multiplier Unit in gem5’s
In-Order CPU Model against the Multiplier in the Rocket
Chip – Performance numbers are for the sequence of 500 mul
instructions. DInst = Dynamic Instruction. CPI = Cycles Per In-
struction.

the sequence’s timing behavior. We also warmed up the instruction
cache by pre-executing the sequence to minimize interference from
the memory system. We used rdcycle and rdinstret instructions
to count the number of cycles and dynamic instructions in the
sequence of interest.

For each mul instruction, the Rocket core’s iterative multiplier
spends one cycle taking input values in, eight cycles doing the
multiplication, and another cycle pushing the output value to the
next pipeline stage. In total, each mul instruction takes 10 cycles
to complete in the Rocket core’s multiplier. The multiplier is not
pipelined, so it cannot execute new mul instructions until the cur-
rent one completes. To model this iterative multiplier in gem5, we
configured gem5’s in-order CPU’s multiplier unit to have 10-cycle
issue and execution latency. Table 3 shows performance numbers
for both models after the validation. The multiplier in gem5’s in-
order model performed close to the multiplier in the Rocket core in
terms of the instruction throughput.

This validation of the multiplier unit is a starting point, and
future validation of other HW units in gem5’s CPU models are
necessary. Our work suggests an incremental timing validation
approach that can be applied to gem5’s CPU models.

5 EVALUATIONWORKLOAD
We chose 13 applications from the Ligra benchmark suite [15] as
our workload (see Table 4). Ligra is a graph processing framework
designed for shared-memory systems. It supports multiple thread-
ing libraries including Cilk [8] and OpenMP [10]. Ligra provides
two lightweight routines called mapEdge and mapVertex to process
subsets of edges and vertices respectively. Multiple subsets can be
processed in parallel. Many applications in Ligra show irregular
characteristics in their parallelism and memory access patterns.

In terms of input graphs, we picked two real-world graphs
called socfb-American75, which is from a collection of Facebook
networks [14], and Kneser_10_4_1, which is from a sparse matrix
collection [5]. socfb-American75 is a dense graph which has around
6,000 vertices and 440,000 edges. Kneser_10_4_1 is a sparser graph
with around 350,000 vertices and 990,000 edges.

In this work, we used four different versions of each Ligra appli-
cation: Serial, OpenMP-Static (OMP-S), OpenMP-Guided (OMP-G),
and Cilk-Work-Stealing (Cilk-WS). We used the OpenMP and Cilk
task parallel runtime libraries shown in Table 5. We used the open-
source RISC-V tool chain including the GNU compiler and GNU
libc to compile the Ligra applications. We only made a minor modi-
fication to the compiler to be able to compile the Cilk runtime. For
the OpenMP runtime, the tool chain works out-of-the-box.
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Applications Input Graphs DInst (M)
Serial OMP-S OMP-G Cilk-WS

BC kneser 1152 1148 1149 1196
BFS kneser 502 502 502 523
BFSCC kneser 607 988 1079 2595
BFS-Bitvector kneser 1042 1059 1059 1082
Components kneser 1719 1719 1735 1746
MIS kneser 646 810 844 835
KCore socfb 628 641 648 1009
PageRank socfb 2858 2861 2862 3241
PageRankDelta socfb 400 401 401 441
Radii socfb 268 268 268 283
Triangle socfb 1069 1069 1069 1121
BellmanFord socfb 138 137 137 147
CF socfb 2670 2670 2670 2889

Table 4: List of Ligra Applications – Serial = single-threaded
versions. OMP-S = multi-threaded versions using OpenMP runtime
with the static scheduling policy. OMP-G = multi-threaded versions
using OpenMP runtime with the guided scheduling policy. Cilk-
WS = multi-threaded versions using Cilk runtime with the work-
stealing policy. DInst = dynamic instruction count. Multi-threaded
versions are simulated on a 4-core in-order CPU in gem5. The
reported numbers are only for regions of interest that include only
graph computation phases and exclude input graph initialization
phases in each application.

6 SIMULATOR PERFORMANCE
In this section, we show the performance of gem5 simulating four
Ligra applications: PageRank, PageRankDelta, KCore, and Trian-
gle. We first show a performance comparison between gem5 and
the Chisel C++ RTL simulator. Then we show that using the fast-
forwarding feature provided with gem5 increased its simulation
speed up to 2× in the set of studied benchmarks. Finally, we present
the scalability of gem5’s performance in multi-core simulations.
We ran our experiments on a multi-core machine with Intel Xeon
E5620 CPUs running at 2.40GHz.

6.1 gem5 vs. Chisel C++ RTL Simulator
We chose the Rocket chip generator as our baseline [1]. The gener-
ator is written in Chisel and can be configured to generate an RTL
model in Verilog. Verilator is then used to compile the RTL model
into a C++ cycle-accurate model that is significantly faster than
the Verilog RTL model. We used a RISC-V proxy kernel to handle
system calls executed in the Chisel C++ RTL simulator instead of
simulating a full Linux kernel for better simulation performance.
Unfortunately, the proxy kernel does not support the clone and
futex system calls. Therefore, we are unable to perform a multi-
threaded simulation performance comparison between gem5 and
Chisel C++ RTL simulator. For this comparison, we used the gem5
configuration with the validated multiplier and the Rocket core as
described in Section 4.

We chose the single-threaded version of KCore from the Ligra
benchmark suite. We measured the end-to-end simulation time of
both simulators using the time Linux command. We counted the
number of cycles and instructions simulated in the simulators using
rdcycle and rdinstret instructions. Table 6 shows a performance

Runtime Chunk Size Task Assignment Work Stealing

OMP-S Fixed Static No
OMP-G Adaptive Dynamic No
Cilk-WS Fixed Dynamic Yes

Table 5: Threading Libraries Used in Our Experiments –
Fixed chunk size = the task chunk size is fixed for a particular
parallel region. Adaptive chunk size = task chunk size is adjusted
dynamically to better handle workload imbalance within a parallel
region. Static task assignment = tasks are assigned statically before
entering a parallel region. Dynamic task assignment = tasks are
assigned on the fly during the execution of a parallel region. If work
stealing is available, a thread can steal tasks from other threads.

Metrics gem5 Simulator Chisel C++ RTL Simulator

DInst (M) 1125 1161
CPU Cycle (M) 1440 1956
KCPS 225 7
KIPS 175 4

Table 6: Performance Comparison between gem5 and Chisel
C++ RTL Simulator – Both simulators run the same single-
threaded binary of KCore. DInst = dynamic instruction. KCPS = kilo
CPU cycles per second. KIPS = kilo instructions per second.

comparison between the two simulators. The Chisel C++ RTL sim-
ulator simulated slightly more instructions than gem5 due to the
extra instructions required for executing system calls in the RISC-V
proxy kernel. The Chisel C++ RTL simulator simulated roughly 36%
more cycles than gem5 did. One possible reason for the difference is
that despite using the validated multiplier in gem5, the performance
of other HW units (e.g., branch predictor, memory load/store unit,
and memory system) has not been validated.

Despite differences in the absolute instruction and CPU cycle
counts, the average number of cycles per second and instructions
per second provide intuition into the relative performance of both
simulators. gem5 is more than an order of magnitude faster com-
pared to the Chisel C++ RTL simulator. This large difference is one
of the key benefits of cycle-approximate vs. cycle-accurate simu-
lation. To provide context, simulating 1B instructions would take
almost three days when using the Chisel C++ RTL simulator, but
this same simulation would take less than two hours when using
gem5.

6.2 Fast-Forwarding Simulation
gem5 can fast forward a sequence of instructions by simulating
them with a simple CPU model that only captures functional be-
havior and excludes the timing behavior of the CPU pipeline, the
memory system, or both. Table 7 shows two simple and two detailed
CPU models that are available in gem5. Switching between a simple
and a detailed model can happen on any given simulation tick. We
modified gem5 to support a custom control-status register (CSR)
to enable software running on the simulator to indicate when to
switch into or out of a detailed CPU model. We used this CSR to
fast forward our benchmarks during their input graph initialization
phase.
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Figure 1: Performance of Different Task Scheduling Mechanisms in a Heterogeneous System

CPU Models CPU Pipeline Memory

AtomicSimpleCPU Simple Simple
TimingSimpleCPU Simple Detailed
MinorCPU Detailed In-order Detailed
DerivO3CPU Detailed Out-of-order Detailed

Table 7: Available CPU Models in gem5. – Simple models only
simulates functional behaviors while detailed models capture both
functional and timing behaviors.

Benchmarks DInst-FF (M) DInst-Detailed (M) Speedup

PageRank 496 2858 1.16x
PageRankDelta 496 400 2.01x
KCore 496 628 1.67x
Triangle 496 1069 1.42x

Table 8: Performance Speedup over Full Simulations with-
out Fast-Forwarding Mode – DInst-FF = number of dynamic
instructions that are fast-forwarded. DInst-Detailed = number of
dynamic instructions that are simulated in the detailed mode.

Table 8 shows performance improvements of gem5 when us-
ing fast-forwarding. All applications studied in this section used
the same input graph, so they all had the same number of fast-
forwarded instructions. Depending on the length of the initializa-
tion phase with respect to the full execution time, fast-forwarding
results in a speedup of 1.16–2.01×.

6.3 Performance Scalability
To understand the performance scalability of gem5 in multi-core
simulations, we ran the four benchmarks using the OpenMP run-
time and the static scheduling policy on systems with a different
number of in-order CPU cores. Figure 2 shows the average number
of simulated instructions per second. The result shows that gem5’s
performance scales well with the number of simulated CPU cores.
When simulating more CPU cores, gem5’s does slows down a little
bit since it simulates more thread communication events between
cores.
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Figure 2: Performance of gem5 in Multi-Core Simulations

7 DESIGN SPACE EXPLORATION
In this section, we are interested in using the implementation of
RISC-V in gem5 to study how irregular applications using differ-
ent threading libraries and task scheduling policies perform on a
heterogeneous multicore system. In particular, we are interested in
the relative performance of static, guided, and work-stealing task
scheduling policies for graph applications executing on a system
with both simple and complex cores [16].

We used gem5 to model a quad-core cache-coherent RISC-V sys-
tem with two simple in-order and two complex out-of-order cores.
Each core has its own private L1 cache. Constructing this model
is straight-forward in gem5 due to its modular design and simple
Python-based configuration interface. We only needed to make
minor changes in the Python configuration. In contrast, building
such a system in RTL would be very challenging.

We ran all 13 Ligra applications with different task scheduling
policies. Figure 1 shows the speedup of each configuration over the
single-threaded version of Ligra applications. The multi-threaded
versions of most applications except BFSCC performed significantly
better than their single-threaded versions. In BFSCC, our selected
input graph results in a large serial region. On average, the quad-
core heterogeneous system achieved a 3.53× speedup over the
single-core system.

Dynamic task scheduling policies (i.e., OMP-G and Cilk-WS)
generally performed better than the static task scheduling policy.
This is due to the workload imbalance in many graph applications
and the heterogeneity of the studied system. Complex and simple
cores complete tasks at different rates. A dynamic task scheduling
mechanism helps balance the workload between cores, which helps
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increase the overall throughput. In terms of performance, OMP-S
is never the best choice for Ligra applications except KCore and
BFSCC. Most of parallel regions in KCore are highly regular, and
its tasks are light-weight. BFSCC has little parallelism, so its multi-
threaded versions did not perform much better than its single-
threaded version.

8 CONCLUSIONS
We presented our work on simulating multi-threaded RISC-V sys-
tems in gem5. We contributed an implementation of thread-related
system calls and synchronization instructions to the existing RISC-
V implementation in gem5. We also modified gem5’s CPU models
to simulate multi-threaded workloads correctly. We showed our
validation approach and how we applied the approach to validate
the functional and timing behavior of the implementation. We
presented gem5’s simulation performance in comparison to the
Chisel C++ RTL simulator, the simulation speedup achieved by
using the fast-forwarding feature in gem5, and gem5’s scalability
in multi-core simulations. Our implementation in gem5 can run
real-world applications and task parallel runtime libraries including
OpenMP and Cilk. We showed a small design space exploration to
illustrate how gem5 can help system designers explore different
design options quickly.
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