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ABSTRACT

The application of modern software design approaches to hardware

design has increased the speed at which teams can move and the

automation they can employ. The adoption of the former, enabled

by Hardware Construction Languages (HCLs), and the promise of

the latter (e.g., the extensibility of the FIRRTL compiler) enable

new approaches to early stage design emulation and evaluation

such as power/timing/area estimation, security veri�cation, and

improved FPGA emulation. We detail a further automation frame-

work, developed as a performer of the DARPA PERFECT program,

that instruments a hardware design with fault injection capabilities.

This work-in-progress framework, Chi�re, automates the instru-

mentation of a hardware design with run-time con�gurable fault

injection logic. Through further proposed automation, Chi�re en-

ables arbitrary fault injection experiments providing insight into the

resiliency of a given design while leveraging the 1000× speedup of

hardware emulation over software emulation. We detail the Chi�re

framework and provide a case study of fault injection into its ease

of use for injecting faults into a RISC-V system.

CCS CONCEPTS
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1 INTRODUCTION

The design of Application Speci�c Integrated Circuits (ASICs) re-

quires a delicate balance in terms of when decisions are made in

the design process. Early architectural decisions often have impacts

that are only evident at the last stages of an ASIC tool�ow, e.g.,

power is traditionally measured reliably only in a placed-and-routed

design and reliability often requires a taped-out chip.

One mitigation strategy is simply to move faster and automate

more. The ASIC design process has been empirically shown to be

amenable to fast-paced Agile Development approaches [13]. Orthog-

onally, early information about the contribution of architectural and
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design decisions to straightforward quantities like power, perfor-

mance, and area as well as more amorphous metrics like reliability

and security is key to building good ASICs.

One strategy for collecting such information is Pre-RTL anal-

ysis that operates not on circuits, but on abstract system compo-

nents, e.g., a cycle accurate simulator like gem5 [4] coupled with a

power/timing/area tool like McPAT [15] and an accelerator design

space exploration tool like Aladdin [17]. Pre-RTL approaches enable

architects to move faster, explore more of the design space, and

provide better product team guidance. While concerns about these

approaches exist [16, 21], we assert a project management view: it’s

hard to be agile when juggling a hierarchy of abstractions spanning

simulators, cycle accurate models, and hardware descriptions.

Alternatively, a design team lives at one abstraction level. Using

an algorithmic abstraction, a designer uses a high level synthesis

(HLS) �ow to convert an algorithmic description of behavior (writ-

ten in, e.g., SystemC) to a hardware description (e.g., Verilog). Using

a generator abstraction, a designer writes a parameterized hard-

ware description in a hardware construction language (HCL), e.g.,

Chisel [3], that elaborates to a hardware description (e.g., Verilog).

While a HLS �ow and design using HCLs are very di�erent in spirit

and implementation, both approaches adopt the standard software

design approach of abstraction to enable teams to move faster.

Towards increased automation, others have adopted software

approaches gleaned from compilers, e.g., writing transforms that

modify a hardware Intermediate Representation (IR) [10]. The FIR-

RTL language (Flexible Intermediate Representation for RTL) and

compiler [14], one such approach, enables this automated optimiza-

tion and customization of circuits for tasks including:

• Backend speci�c optimizations, e.g., adding technology-

speci�c SRAMs for an ASIC design

• State snapshotting via instrumented registers and memo-

ries to enable sampled power estimation [12]

• Faster emulation via a relaxation of timing parameters and

software simulation of certain hardware [11, 12]

• Timing and area estimation via static analysis passes [6]

• Design-time security checks with a SAT solver verifying

a FIRRTL-emitted information �ow description [7]

Under the auspices of the DARPA PERFECT program, we have

developed low power and resilient design techniques to compos-

ably augment a RISC-V microprocessor [8]. One aspect of these

resilient design e�orts, mentioned but not described in detail in [8],

is an open source, FIRRTL-based framework for injecting faults into

emulated designs to measure resiliency. This framework, Chi�re,1

then enables what if fault injection experiments as well as more

1Chained Hierarchical Injection for Fault Resiliency Evaluation
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Figure 1:Chi�re provides a framework for design-time instrumentation and run-time injection to answer high-level questions

capable of being expressed as fault injection experiments. A designer speci�es circuit components in which to inject run-time

programmable faults. Chi�re FIRRTL annotations communicate to Chi�re FIRRTL passes what to instrument and how. A

designer then con�gures these injectors at run time with the help of a scan chain bitstream generation utility.

complicated automated analyses analyses, e.g., selective latch hard-

ening based on empirically measured resiliency like in the CLEAR

methodology [5]. This paper details the Chi�re framework, pro-

vides an example case study using injections into a RISC-V Rocket

microprocessor [1], and contrasts this approach with internal ap-

proaches to achieve the same goal.

2 MOTIVATION

Figure 1 shows a motivating story where a user wants to answer

di�cult questions related to a speci�c hardware design, e.g., how a

given design is a�ected by low voltage operation or how amenable

a design is to approximate computing. Certain questions can be

reformulated in terms of fault injection experiments, e.g., modeling

low voltage operation as faults injected into the N most critical

paths. At this point, the user currently has two major options to add

fault injection capabilities: manual or automated instrumentation.

Manual instrumentation adds to the cumbersome project man-

agement task with yet another model: a new design variant, manu-

ally modi�ed with fault injectors that is inherently brittle and must

by synced with the original design. Automated instrumentation for

hardware is possible [18, 19], but the tools are severely lacking.

Early e�orts towards building the Chi�re framework used Verilog-

Perl [18], a Perl library with support for reading Verilog netlists

into an internal data structure, methods for modifying the data

structure, and an emitter to write the data structure back to Verilog.

The fundamental di�culty with this approach, similar approaches

like Pyverilog [19], or any approach that modi�es a high level lan-

guage, is in the fundamental complexity of the language. Due to

the complexity and pitfall-riddled nature of Verilog, SystemVer-

ilog, and VHDL, it is therefore not surprising that Verilog-Perl or

Pyverilog do not support all the common synthesizable Verilog

constructs. This is not a criticism of these approaches—for-pro�t tool

manufactures routinely fail to support modern language features.

Similarly unsurprisingly, there exists a cottage industry just for

Verilog, SystemVerilog, and VHDL parsing, e.g., the tools provided

by Veri�c Design Automation [2].

Furthermore, our initial Verilog-Perl version operated on FIRRTL-

emitted Verilog, i.e., simplistic, structural Verilog that does not stress

the limits of the language, and this was still insu�ciently powerful.

We had to fall back to manually written regular expression parsing

and, essentially, macro expansion for insertion of parameterized

fault injectors. This resulted in a brittle, non-scalable approach.

The Chi�re framework, a reimplementation of the above e�orts

in Chisel and FIRRTL, aims to alleviate these di�culties.

3 CHIFFRE FRAMEWORK

Towards enabling fault injection experiments that address di�cult

high-level questions like those shown in Figure 1, the Chi�re frame-

work provides a number of components that facilitate design-time

instrumentation and run-time fault injection:

• A Chisel library that provides example fault injectors as

well as traits and methods for annotating the speci�c circuit

components that a user wants to make injectable

• Chi�re instrumentation FIRRTL passes that modify a

FIRRTL circuit to add run-time programmable fault injectors

into annotated components

• A run-time fault injection utility for generating scan

chain bitstreams that con�gure available fault injectors

• An example fault injection controller implemented as a

Rocket Custom Coprocessor (RoCC)

While seamless to use together, the latter two items are entirely

independent from the former library—the FIRRTL passes can be

used directly on any FIRRTL circuit. Presupposing a converter for

a user’s hardware design language of choice (e.g., Yosys’ Verilog

frontend and FIRRTL backend), Chi�re FIRRTL passes can be used

to enable fault injection experiments for any hardware design.

3.1 Chi�re Chisel Library

The Chi�re Chisel library aims to make fault injection instrumen-

tation as low e�ort as possible with minimal necessary modi�-

cations to a given hardware description. We achieve this aim by

not modifying a circuit at all at the Chisel level. The Chi�re Chisel

library de�nes two new traits—ChiffreController for fault injec-

tion controllers and ChiffreInjectee for modules that contain

fault injectable components. These automatically emit annotations,

https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L23
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L46
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import chisel3._

import chiffre._

/* A controller for injectors on the "main" scan chain */

class MyController extends Module with ChiffreController {

val io = IO(new Bundle{})

lazy val scanId = "main"

/* MyController body with scan chain logic not shown */

}

/* A module with faulty components */

class MyModule extends Module with ChiffreInjectee {

val io = IO(new Bundle{})

val x = Reg(UInt(1.W))

val y = Reg(UInt(4.W))

val z = Reg(UInt(8.W))

isFaulty(x, "main", classOf[inject.LfsrInjector32])

isFaulty(y, "main", classOf[inject.StuckAt])

isFaulty(z, "main", classOf[inject.CycleInjector32])

}

Listing 1: Example source designmodi�ed to enable fault in-

jection. Using the Chi�re Chisel library wemake registers x,

y, and z injectable with, respectively, pseudorandom faults,

stuck at faults, and cycle-speci�c transient faults. These in-

jectors (LfsrInjector32, StuckAt, and CycleInjector32) are

added to the "main" scan chain controlled by MyController.

metadata about a circuit component that a speci�c FIRRTL pass

should operate on, that indicate who is a fault controller and what

types of fault injection units to insert.

Listing 1 shows a minimal example of a Chisel circuit where com-

ponents of MyModule are made injectable. The isFaulty method

annotates these components as faulty, assigns them to a speci�c

scan chain, and identi�es a speci�c fault injector that will be used

to inject faults into them. Each scan chain must resolve to an asso-

ciated scan chain controller (a concrete Module that mixes in the

ChiffreController trait). At this time, no circuit components are

connected, no logic is modi�ed, and no fault injectors are inserted.

The Chi�re library additionally provides an abstract base class

of a fault injector, Injector, and three concrete implementations

of fault injectors:

• LfsrInjector for pseudorandom bit �ips

• StuckAt for stuck-at zero/one faults in words

• CycleInjector for bit �ips at a speci�c time

Listing 2 shows the annotations resulting from use of the Chi�re

library in Listing 1. As should be evident, these are a succinct en-

capsulation of the information communicated by the modi�cations.

At this point, the FIRRTL compiler takes over and will apply the

circuit modi�cations indicated by these annotations.

3.2 Chi�re Instrumentation FIRRTL Passes

Figure 2 shows the steps the FIRRTL compiler takes to convert

a Chisel hardware description to Verilog. The Chisel compiler

emits FIRRTL, the FIRRTL compiler optimizes the FIRRTL using

passes/transforms, and a Verilog emitter produces Verilog. Trans-

forms may optionally add new annotations for inter-transform

[{ "class":"chiffre.passes.ScanChainAnnotation",

"target":"Top.MyInjector.scan",

"ctrl":"master",

"dir":"scan",

"id":"main" },

{ "class":"chiffre.passes.FaultInjectionAnnotation",

"target":"Top.MyModule.x",

"id":"main",

"injector":"chiffre.inject.LfsrInjector32" },

{ "class":"chiffre.passes.FaultInjectionAnnotation",

"target":"Top.MyModule.y",

"id":"main",

"injector":"chiffre.inject.StuckAt" },

{ "class":"chiffre.passes.FaultInjectionAnnotation",

"target":"Top.MyModule.z",

"id":"main",

"injector":"chiffre.inject.CycleInjector32" }

]

Listing 2: Annotations for Chisel code in Listing 1

to be consumed by the ScanChainTransform and

FaultInstrumentationTransform

Inline
Compile

foo.v

FIRRTL Compiler

Chisel

Verilog

Annotations

foo.scala

Scan Chain
JSON

Software Libraries

Figure 2: Chisel toVerilog generation process. Chi�re instru-

mentation occurs using the three transformations shown.

communication. We accomplish Chi�re instrumentation with three

speci�c transforms applied in order:

(1) FaultInstrumentationTransform: This splices fault injec-

tors into the circuit and adds them to the scan chain.

https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/LfsrInjector.scala#L56
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/StuckAt.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/CycleInjector.scala#L60
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L49
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L23
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/Injector.scala#L48
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/LfsrInjector.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/StuckAt.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/CycleInjector.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/ScanChainTransform.scala#L109
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/FaultInstrumentationTransform.scala#L36
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/FaultInstrumentationTransform.scala#L36
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{ "main":[

{ "name":"Top.MyModule.x",

"injector":{

"class":"chiffre.scan.LfsrInjectorInfo",

"width":1,

"lfsrWidth":32 }},

{ "name":"Top.MyModule.y",

"injector":{

"class":"chiffre.scan.StuckAtInjectorInfo",

"width":4 }},

{ "name":"Top.MyModule.z",

"injector":{

"class":"chiffre.scan.CycleInjectorInfo",

"width":8,

"cycleWidth":32 }}

]}

Listing 3: JSONdescription of aChi�re-generated scan chain

for annotations in Listing 2

(2) ScanChainTransform: This determines scan chain ordering

and determines what should be wired.

(3) WiringTransform:2 This performs all pending connections

as determined by previous transforms.

In e�ect, fault injectors are added, the components that need

to be connected and their order is determined, and all pending

connections are made. The determined order of the scan chain is

exposed externally in a JSON �le like that shown in Listing 3.

Figure 3 shows the abstract result of these three transforms.

Here, a register x was tagged for fault injection just like in List-

ing 2. The FaultInstrumentationTransform adds, internal to the

module that contains x, an instance of the fault injector speci�ed

by the annotation. However, this fault injector may have never

existed in the original circuit. As used in MIDAS [11], fault injector

modules are added via inline compilation of Chisel code. Speci�-

cally, the particular injector speci�ed in the annotation is passed

through the Chisel compiler and portions of the FIRRTL compiler

to generate FIRRTL that is added to the original design. This avoids

having to write brittle FIRRTL and takes advantage of the inherent

parameterization made available to Chisel by the Scala language.

Once inserted into the circuit, the faulty component (register x) is

connected to the input of the fault injector. All references to the old

component (i.e., any time that x appeared in the right-hand-side of a

connection statement) are replaced with references to the output of

the fault injector. This process repeats for all provided annotations,

e.g., in the case of Listing 2 this proceeds for registers y and z.

Finally, all added injector instances emit annotations indicating

that they should be added to the scan chain.

The ScanChainTransform then collects all scan chain annota-

tions and determines an appropriate ordering for the scan chain.

During this process, a JSON description of the scan chain is emitted

(see Listing 3) that will be used to generated scan chain bitstreams

by downstream tools. Note that the scan chain transform performs

no circuit modi�cations—it only emits further annotations to be

consumed by FIRRTL’s WiringTransform. This transform resolves

2We refactored Adam Izraelevitz’s original WiringTransform to support our needs
and upstreamed this with FIRRTL 1.1.0.

arbitrary cross module connects described by annotations. In e�ect,

this acts as a primitive on top of which more complex modi�cations,

like the scan chain insertion done here, can be built.

Following this, the FIRRTL compiler completes its usual set of

remaining passes and uses its backend emitter to generate Verilog.

The original design instrumented with run-time con�gurable fault

injectors is now ready. Note that an unmodi�ed design can be

generated by simply not running the Chi�re FIRRTL passes.

3.3 Run-time Fault Injection Utility

For an instrumented design, a user needs to generate and scan in a

scan chain bitstream that con�gures all fault injectors in the design.

We provide a utility, scan-chain-config, that helps generate this

bitstream based on user requirements. This utility reads a scan chain

description (e.g., Listing 3) generated by ScanChainTransform.

This operates on a simple principle: all fault injectors, as part of

their Chisel description, must declare what con�gurable �elds they

contain, if any. The utility, given the scan chain description that

speci�es what fault injectors are used, can then determine what

con�gurable �elds exist in a given design. The utility then takes un-

speci�ed free �elds and binds them to hard values based on defaults

or user-speci�ed parameters.

As an example, the LfsrInjector has two �elds parameterized

by the width of the LFSR: a Difficulty and a Seed. When using

the tool, the user must specify a probability of a fault being injected

(which will be converted to a di�culty) and may optionally specify

a seed. If the utility doesn’t have enough information to bind all

free �elds, then it fails noisily.

Listing 4 shows the verbose output when con�guring the scan

chain from Listing 3. The additional con�gurable �elds are shown

with bound values. Additionally, the utility generates a header

composed of the scan chain length and a Fletcher 32-bit checksum

of the non-header portion of the bitstream.

With this utility, the overall fault injection methodology involves

generating a set of bitstreams to appropriately cover the fault in-

jection experiment a user wants to run. Such closed-loop support

is not provided as part of the Chi�re framework, we intend to add

this support going forward.

3.4 Example RoCC Fault Injection Controller

As one example of a Chi�re controller, we provide LeChiffre (Low

E�ort Chained Hierarchical Injector for Fault Resiliency Evaluation).

LeChiffre is a concrete implementation of a ChiffreController

that uses the RoCC interface. This provides a simple API for scan-

ning in a fault con�guration from memory, verifying its checksum,

and enabling/disabling fault injection capabilities. This controller

can be used to inject into other designs or, in the example we elab-

orate on below, directly into Rocket.

4 ROCKET CHIP INJECTION CASE STUDY

Using the Chi�re framework, we instrument Rocket Chip’s source

to inject faults in non-critical control and status registers (CSRs).

We then construct a number of di�erent tests to verify the correct

functionality of the instrumented designs with faults.

Using the same method as shown in Listing 1, isFaulty, we

add a StuckAt injector to the cycle CSR, an LfsrInjector to the

https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/ScanChainTransform.scala#L109
https://github.com/freechipsproject/firrtl/blob/57025111d3bc872da726e31e3e9a1e4895593266/src/main/scala/firrtl/passes/wiring/WiringTransform.scala#L58
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/FaultInstrumentationTransform.scala#L36
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/ScanChainTransform.scala#L109
https://github.com/freechipsproject/firrtl/blob/57025111d3bc872da726e31e3e9a1e4895593266/src/main/scala/firrtl/passes/wiring/WiringTransform.scala#L58
https://github.com/freechipsproject/firrtl/blob/57025111d3bc872da726e31e3e9a1e4895593266/src/main/scala/firrtl/passes/wiring/WiringTransform.scala#L58
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/scan-chain-config/src/main/scala/ScanChainConfig.scala#L00
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/passes/ScanChainTransform.scala#L109
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/LfsrInjector.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/scan/scan.scala#L42
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/scan/scan.scala#L48
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/LeChiffre.scala#L32
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/LeChiffre.scala#L32
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L23
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/Instrumentation.scala#L49
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/StuckAt.scala#L20
https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/LfsrInjector.scala#L20
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Figure 3: Instrumentation achieved by Chi�re FIRRTL transforms shown in Figure 2. A user-identi�ed component, register

x, is instrumented with a fault injector. Inline compilation compiles a speci�ed injector from Chisel to FIRRTL and adds it to

the circuit. The fault injector is spliced into the original circuit—x is connected to the fault injector’s input and all references

to x are replaced with the output of the injector). Finally, all fault injectors and their controller are connected via a scan chain.

fflags CSR, and a CycleInjector to the frm CSR. Critically, this

instrumentation takes the same amount of e�ort as Listing 1, i.e.,

four lines: one to mixin the injectee trait and one line apiece to

annotate the CSRs as faulty with their associated injector.

We then construct one test per fault injector that pass when

a condition that would be impossible for the original circuit oc-

curs. Speci�cally, we read a �xed value from the cycle counter

(0xdeadbeef), perform back-to-back reads from frm and verify

that they di�er, and read fflags multiple times �nding di�erences.

This combined test case, while clearly of a “hello world” nature is 70

source lines of code. Critically, the circuit instrumentation necessary

to enable this fault injection only required four lines. Furthermore,

the instrumentation enabled by FIRRTL is entirely reproducible,

immune to odd use of language features, etc. This contrasts dramati-

cally with the original Verilog-Perl approach discussed in Section 2.

Summarily, the FIRRTL version of the Chi�re framework enables

low e�ort, non-brittle fault injection experiments that can support

arbitrarily complex designs while running at hardware emulation

speeds of at least 1000× faster than software emulation.

5 CONCLUSION

The Chi�re framework is intended to provide extremely easy, scal-

able experimentation with run-time fault injection. As shown in

the case study, the amount of user e�ort required to instrument

a design (in terms of modi�ed lines of code) is, at worst, equal to

the number of components a user wants to instrument. Further

reductions in this are planned with additional Chi�re traits that

instrument all components in a region of the design (e.g., in one

speci�c module or in a module and all its submodules) or all com-

ponents that match a speci�c type/attribute (e.g., all registers). This

approach enables scalability, from a designer e�ort perspective, for

fault injection experiments that encompass entire designs.

Additionally (and critically), source-level modi�cations needed

by the Chi�re framework make no actual modi�cations to the

source design. These only act as helpers for emitting FIRRTL an-

notations. Equivalently, a user could write FIRRTL annotations

directly or with an auxiliary helper utility while avoiding any of

the traits and methods provided by the Chi�re Chisel library. This,

coupled with the fact that FIRRTL backends are becoming more

common for hardware construction languages as well as hardware

description languages (e.g., Yosys’ FIRRTL backend), enables the

use of the Chi�re framework for designs in arbitrary languages

that can be converted automatically to FIRRTL.

Chi�re’s instrumentation passes bear a strong resemblance to

Strober [12] and MIDAS [11]. Both involve splicing Chisel artifacts

https://github.com/IBM/chiffre/blob/c0292079071e20f3673a866a18e82a19d157aff4/src/main/scala/chiffre/inject/CycleInjector.scala#L20
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main:

length: 0x50 # scan chain binary length in bits

checksum: f7a1719a # Fletcher checksum (32-bit)

raw: 0000f6997ffff300 00000802f7a1719a 00000050

chain:

- Top.MyModule.x:

type: lfsr32 # flip `x` with 50% fault probability

width: 1

name: Seed

width: 32

value: 00000000000000000000000000000001

name: Difficulty

width: 32

value: 01111111111111111111111111111111

- Top.MyModule.y:

type: stuckAt # inject 0x03 into all bits of `y`

width: 4

name: Mask

width: 4

value: 1111

name: StuckAt

width: 4

value: 0011

- Top.MyModule.z:

type: cycle32

width: 8

name: Cycle # inject 0x2 at cycle 0x8 into `z`

width: 32

value: 00000000000000000000000000001000

name: CycleInject

width: 8

value: 00000010

Listing 4: Verbose output of scan-chain-config showing

bound con�gurable �elds for the fault injectors in Listing 3

(MIDAS’ widgets) into a design, wiring these up with a network,3

and exposing information about the network to auxiliary tools that

orchestrate complex experiments, e.g., state snapshotting. These

similarities may motivate the need for common instrumentation

infrastructure for the set of automated modi�cations that involve

information injection/extraction from a FIRRTL design.

The Chi�re framework currently only supports fault injection

into register or wire components. We plan to add support for static

and dynamic memory injection. However, dynamic fault injection

into memories may require decoupling emulation time from FPGA

clock ticks, i.e., FAME-like transformations [20] that push very

close to Strober/MIDAS. Additionally, Chi�re requires further au-

tomation related to fault injection data collection, e.g., we would

like to move the level of abstraction from, “Which register should I

inject into?” to “What is the sensitivity of this register to voltage

noise?” The latter requires generation of an array of scan chain

bitstreams as well as an easy way to collect the results of a fault

injection experiment. We view this broadly as an open question.

Chi�re is an actively developed open source hardware/software

project available on GitHub [9] under an Apache v2 license.

3Strober/MIDAS necessarily provide wider interfaces than Chi�re’s one-bit scan chain.
We plan to extend Chi�re similarly to support faster fault injector con�guration.
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