
Debugging RISC-V Processors with FPGA-Accelerated RTL
Simulation in the FPGA Cloud

Donggyu Kim1, Christopher Celio2, Sagar Karandikar1, David Biancolin1,
Jonathan Bachrach1, Krste Asanovic̀1

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
{dgkim, sagark, biancolin, jrb, krste}@eecs.berkeley.edu

2Esperanto Technologies
christopher.celio@esperantotech.com

ABSTRACT
We present DESSERT, an FPGA-accelerated methodology for
simulation-based RTL verification. The RTL design is automati-
cally transformed and instrumented to allow deterministic simu-
lation on the FPGA with initialization and state snapshot capture.
Assert statements, which are present in RTL for error checking
in software simulation, are automatically synthesized for quick
hardware-based error checking. Print statements in the RTL design
are also automatically transformed to generate logs from the FPGA,
which are compared on the fly against a functional golden-model
software simulator for more exhaustive error checking. To rapidly
provide waveforms for debugging, two parallel deterministic FPGA-
accelerated RTL simulations are run spaced apart in simulation
time to support capture and replay of state snapshots immediately
before an error. We demonstrate DESSERT with the public FPGA
cloud services by catching bugs in a complex out-of-order proces-
sor hundreds of billions of cycles into SPEC2006int benchmarks
running under Linux.

1 INTRODUCTION
The increasing complexity of modern hardware design makes veri-
fication challenging, and verification often dominates design costs.
While formal verification approaches are increasing in capability
and can be successfully employed for some blocks or some aspects
of a design, and while unit-level tests can improve the confidence in
individual hardware blocks, dynamic verification using simulators
or emulators is usually the only feasible strategy for system-level
verification. As well as verifying directed and random test stimuli, it
is also important to validate the system specifications and design by
running application software on the design. In addition to the large
effort to create a system-level testbench, each bug found requires
considerable effort to diagnose and repair.

Debugging errors found at the system-level while running real-
istic workloads is a notoriously difficult task. Existing approaches
for system-level pre-silicon verification and debugging fall into a
few categories as shown in Table 1.

Software RTL simulation with assertion detection can be an
effective methodology for RTL verification and debugging, by pro-
ducing waveform dumps that give full visibility into bugs. However,
software RTL simulation is far too slow (up to tens of KHz) to run
realistic workloads on complex hardware designs and becomes even
slower when waveform dumps are enabled.

Hardware emulation engines, such as Cadence Palladium and
Mentor Veloce, provide a software-like debug environment while
being fast (around 1 MHz). But these custom emulation engines

are extremely expensive, and can only be justified by the largest
projects. Even in these projects, they remain a scarce resource that
must be shared across multiple teams.

FPGA prototyping is a mainstay of pre-silicon full-system val-
idation, as it is significantly cheaper than commercial hardware
emulation engines and can be faster: single-FPGA prototypes can
execute at tens to hundreds of MHz. However, FPGA prototypes
provide limited visibility for signal activities, making it extremely
difficult to debug any errors encountered. Moreover, many bugs
are sometimes difficult to reproduce, as they may depend on the
non-deterministic initial state and latencies in the host-platform,
such as DRAM or network I/O. While vendors provide FPGA signal
monitoring tools, such as ChipScope [20] and SignalTap [9], these
require manual selection of a few signals, leading to long debug
loops as the design must be re-instrumented, re-synthesized, and
re-executed to change the observed signals. There has been signif-
icant research towards improving controllability and visibility in
FPGA prototypes by providing GDB-like interfaces [3, 5, 10] that
allow emulations to be carefully advanced, halted, and resumed,
selected internal signals to be read and forced, breakpoints to be
set at runtime, and emulation to be rewound. Unfortunately, like
the vendor-provided tools, effective debugging is predicated on
selecting the right subset of signals to be instrumented for reads,
forces, and breakpoints.

Checkpointed FPGA prototyping removes the need to intel-
ligently select signals to instrument [4, 7, 14, 17, 18, 21] by allow-
ing error waveforms to be reconstructed in software RTL simula-
tion. While this provides full visibility of the design in a region-
of-interest (ROI), checkpoint intervals must be carefully chosen
as frequent checkpointing of large designs can easily become a
simulation bottleneck, while taking fewer snapshots lengthens the
required I/O trace and the time it takes to replay the error in soft-
ware simulation.

In this paper, we present DESSERT, an FPGA-acceleratedmethod-
ology for effective simulation-based RTL verification and debugging
with the following contributions:

• Deterministic FPGA-accelerated RTL Simulation: We
build upon earlier work in FPGA-accelerated RTL simulators
to accelerate RTL verification and debugging. We extend
the Strober energy simulation framework [13], which au-
tomatically generates FPGA-accelerated RTL simulators as
synchronous dataflow [15] machines to ensure deterministic
execution given the same initial target state. We enhance the
Strober automatic scan-chain insertion capability to initial-
ize and extract the target RTL state for RTL debugging. The

RTL Verification Approach Speed Easy to Use Deterministic Controllability Visibility Cost
Software simulation Very Slow ✓ ✓ High Full Low

Hardware emulation engine Fast ✓ ✓ High Full Very High
FPGA prototype Very Fast ✓ ✗ Low Limited Low

Instrumented FPGA prototype Fast ✗ ✗ Moderate Limited High
Checkpointed FPGA prototype Moderate ✗ ✗ Low Full Moderate

DESSERT Very Fast ✓ ✓ High Full in ROI Low
Table 1: A Comparison of Contemporary Simulation Technologies for Simulation-based RTL Verification

target memory space in the off-chip DRAM is also initialized
through an automatically-instrumented loadmem unit.
• Effective Error Checking from the FPGA: We imple-
ment custom compiler passes using FIRRTL [11] to automat-
ically synthesize assert and print statements existing in RTL
for error checking from the FPGA. Assertion synthesis pro-
vides quick hardware-based error checking with negligible
simulation performance penalty. Print statement synthesis,
on the other hand, provides more exhaustive software-based
error checking by generating commit logs from FPGA, which
are compared on the fly against a functional golden-model
software simulator.
• Low Performance Overhead on Error Detection and
Replay: Since our FPGA-accelerated RTL simulators are de-
terministic, we run two identical FPGA simulation instances
in parallel spaced apart in simulation time to allow errors
detected by the lead instance and to be replayed from an
RTL snapshot captured by the trailing instance, significantly
reducing state snapshotting overhead compared to periodic
checkpoints. With this technique, DESSERT can provide
full-visibility waveforms of a buggy design without needing
to rerun the simulator and without sacrificing simulation
performance.
• System-Level Debugging with Real-World Hardware
and Software: The main contribution of this paper is
to demonstrate a fast and easy-to-use methodology for
system-level debugging. We demonstrate our methodology
by simulating an open-source RISC-V in-order processor,
Rocket [1], and an open-source RISC-V out-of-order proces-
sor, BOOM [6], to catch and fix bugs that occur hundreds
of billions cycles into the SPECint2006 benchmark suite in
Linux. While in this paper, we study RISC-V processors and
pipe a generated commit log to a reference ISA simulator, the
approach can be generalized to other RTL modules for which
a golden model exists. In lieu of a golden model, inspecting
synthesized assertions already present in the RTL is often a
sufficient means to detect a simulation error.

2 COMPILER PASSES FOR DETERMINISTIC
FPGA-ACCELERATED RTL SIMULATION

Figure 1 shows the tool flow for FPGA-accelerated RTL simulation
including custom compiler passes to automatically transform the
target RTL. All custom transforms are implemented as compiler
passes in the FIRRTL Compiler [11]. This framework is language-
agnostic: once the target designs are translated into FIRRTL from
the language frontend, we can apply the compiler passes in Figure 1
regardless of their host HDLs.

Hardware(Host FPGA) Software(Host CPU)

FI
RR

TL
 C

om
pi

le
r

Target RTL Design

Assertion & Log Synthesis
FAME1 Transform

Scan Chain Insertion
Simulation Mapping
Platform Mapping

FPGA Backend Flow

Simulation Driver

I/O Devices

C++ Compiler

Driver BinaryMetadata
Text Files

Functional
Simulator

Target Specific
C++ Header

Bitstream

Verilog

Figure 1: Toolflow for FPGA-Accelerated RTL Simulation

Host FPGA Platform (e.g. Amazon EC2 F1 Instance)
Host CPU Host FPGA

MMIO
I/O Devices

RTL
Memory
System
TimingSimulation

Driver

FPGA DRAM

Main
 Memory

I/O Tranport

Assertion Checker

Log Stream UnitDMAFunctional
Simulator

Loadmem
UnitScanchains

: Target Module :Existing Simulation Component : Debugging Module

Figure 2: Mapping Simulation to the Host FPGA Platform.

This FAME1 transformation allows simulation modules to run
decoupled from the host FPGA clock, which is an important opti-
mization when all components cannot be hosted on a single FPGA.
In our case studies for full-system verification, the main memory
and I/O devices are mapped to the host platform memory and
the software components respectively, while the RTL designs are
mapped to the FPGA fabric (Figure 2).

PlatformMapping (Figure 1) links all simulationmodels including
the FAME1-transformed RTL and abstract timing models for the
main memory and I/O devices, and generates the correct interface
for FPGA-software communications in various platforms. This pass
also inserts the loadmem unit to initialize the memory space visible
to the target design (Section 3) and helper units for bug detection
including an assertion checker and a log stream unit (Section 4.3).
A complete simulation system is mapped to a heterogeneous FPGA
platform as shown in Figure 2. Presently, we support both Amazon
EC2 F1 instances and Xilinx Zynq boards as FPGA-host platforms.

3 STATE SNAPSHOTTING AND
INITIALIZATION

The Strober framework implements automatic scanchain insertion
to capture RTL state snapshots for sample-based power model-
ing [13]. The DESSERT framework uses this technique for error
replays. The scanchain implementation is extended to support tar-
get state initialization, which is necessary to initialize registers

2

1 class Count extends Module {
2 val io = IO(new Bundle {
3 val en = Input(Bool())
4 val done = Output(Bool())
5 val cntr = Output(UInt(4.W))
6 })
7 // count until 10 when `io.en' is high
8 val (cntr, done) = Counter(io.en, 10)
9 io.cntr := cntr
10 io.done := done
11
12 // assertion for software simulation
13 // `cntr' should be less than 10
14 assert(cntr < 10.U)
15
16 // printing for software simulation
17 // show the counter value when `io.en` is high
18 when(io.en) {
19 printf("count: %d\n", cntr)
20 }
21 }

Figure 3: Unsynthesizable Simulation Constructs in Chisel

and BRAMs that may have unexpected values after the host FPGA
resets.

The off-chip DRAM should also be initialized as it is part of
the target design’s state. The loadmem unit (Figure 2), which is
automatically added by the platform mapping (Section 2), not only
loads the program to execute but also initializes the remaining
target main memory space.

We also need I/O traces for error replays in software simulation.
Specifically, if an RTL snapshot is to be replayed for L cycles, the
inputs and the outputs for L cycles must be recorded by commu-
nication channels after the RTL snapshot is taken [13]. When the
RTL snapshot is loaded in software simulation, the input traces are
fed to the inputs of the target design to drive the replay, while the
output traces are compared cycle by cycle against the outputs of
the target design to check the correctness of the replay.

4 ERROR CHECKING FROM FPGAS
4.1 Simulation APIs in Chisel
Rocket Chip [1] and BOOM [6], the RISC-V processors featured in
this case study, are written in Chisel [2], a hardware construction
language that makes RTL design more productive via metapro-
gramming in a richly featured host language, Scala. Chisel makes it
easy to describe libraries of reusable hardware generators, param-
eterization systems, and interconnect generators to link together
a complex SoC. In Chisel version 3.0 [8], the front-end language
is decoupled from the backend compiler: Chisel libraries generate
FIRRTL (Flexible Intermediate Representation for RTL), while the
backend compiler applies passes that gradually “lower" the FIRRTL
code to Verilog [11].

Chisel, like Verilog or VHDL, provides non-synthesizable print
and assert constructs for software RTL simulation. Figure 3 demon-
strates their use. The module contains a counter that increments
until 10 when enabled (line 8). In this example, we expect the the
counter will never increment past 10: we check this with an assert
on line 14. A printf (line 18-20), lets the engineer inspect the
counter value without looking at the waveform. Rocket Chip and

Top-level Module

Module A

Module B

stop(a)

printf(…, b, …)

Top-level Module

Module A

Module B

a

b

Assertion
Checker

Log
Stream

Unit

Sim
ulation /

Platform
 M

apping

Assertion & Print
Synthesis

Top-level Module

Module A

Module B

a

b

Figure 4: stop and printf Synthesis for Error Checking

BOOM use assertions extensively to check their designs. In addi-
tion to asserts, traces of important activity, like commit logs, are
generated with printf.

4.2 Assertion and Log Synthesis
DESSERT supports two ways to detect RTL bugs from FPGAs:
quick hardware-based assertion checking and more exhaustive
software-based checking that compares logs against a software
golden-model functional simulator. Rather than manual instrumen-
tation, DESSERT automatically transforms assertions and logs that
are already present in the source code for software RTL simulation
(Assertion and Log Synthesis in Figure 1).

In FIRRTL, there are two constructs to support assertions and
logs: stop and printf [16]. stop is used to halt the simulation
for a certain condition, while printf is used to print a formatted
text when its condition is met. In general, assertions in HDL (e.g.
assert in Chisel) are expressed as stop with their error messages
printed out by printf. Also, logs in HDL (e.g. printf in Chisel)
are expressed as formatted messages in terms of RTL signal values
with printf.

By default, stop and printf are emitted as non-synthesizable
functions in (System) Verilog (e.g. $fatal and $fwrite). However,
DESSERT automatically transforms stop and printf as synthesiz-
able logic for error checking from the FPGA.

Figure 4 depicts how to automatically transform assertions and
logs into synthesizable logic. Note that their conditions and argu-
ments are logic expressions of RTL signals. Thus, Assertion and Log
Synthesis (Figure 1) inserts the combinational logic and the signals
for the conditions and the arguments of stop and printf. This
pass also creates output ports and connects the signals inserted for
assertions and logs to these ports so that RTL errors are detected
at the boundary of the top-level module. In addition, this compiler
pass emits encodings of the assertions and logs that are synthesized
(e.g. the error message for each assert and the print format for
each printf) into text files that are used by the software simulation
driver running on the host CPU.

4.3 Handling Assertions and Logs from FPGAs
After assertions and logs are synthesized, their top-level output
ports are treated in the same way as the other top-level I/Os of the
target design by Simulation Mapping in Figure 1. As a result, these
output ports also generate their own timing tokens, which contain
the cycle-by-cycle values of the output ports, every simulation cycle
(Figure 4).

The timing tokens generated by assertions and logs are crucial
for cycle-exact error checking from FPGAs, which will determinis-
tically occur at the same target-cycle in both software and FPGA-
accelerated RTL simulations. Figure 4 also shows how these timing

3

tokens are handled by instrumented hardware units in FPGA, which
are automatically inserted by Platform Mapping in Figure 1.

The assertion checker consumes timing tokens generated by as-
sertions and inspects their values, which has no effect on simulation
progress with no assertion failures. The assertion checker detects
an error at cycle t if the value of the timing token at cycle t is
non-zero, which means at least one assertion has fired. In this case,
the checker records the target-cycle t and the assertion id inferred
from the timing token’s value, and then stops accepting new tokens,
which will halt simulation.

In parallel, the software simulation driver infrequently polls the
assertion checker through memory-mapped I/O (Figure 2), and thus
cycle-exact assertion detection can be achieved with negligible loss
of simulation speed. When an assertion is detected from the FPGA,
the simulation driver reads the target-cycle and the assertion id
from the checker and reports the assertion message along with its
target-cycle using the text file generated by the Assertion and Print
Synthesis pass (Section 4.2).

While the assertion checker simply drops timing tokens after
inspecting them, in a log, these tokens along with their timestamps
must be stored. Suppose a processor simulates at a clock rate of
50MHz with a IPC of 0.5. If we print 64 bytes per committed in-
struction, this simulation would produce a commit log at 1.6 GiB/s.
To manage this bandwidth, the log stream unit relies on inter-FPGA-
CPU DMA to transfer the generated log en masse (Figure 2). Be-
tween DMA events, the log is buffered in a large BRAM FIFO. When
the buffer is full, the log stream unit stops consuming timing tokens
to pause simulation until the buffer is drained, which prevents loss
of log entries. 1

Once log entries are transferred from the FPGA to the buffers in
the software simulation driver through DMA, they can be output on
a console, piped to a file or consumed by a software golden model
for exhaustive error checking.

4.4 Commit Log Comparison for
Microprocessors

DESSERT is a general methodology that can be applied to any
hardware designs. As such, for software-based error checking, logs
generated from FPGAs are compared against a software golden
model of any RTL. However, if we use DESSERT for micropro-
cessor verification, the state of the software functional simulator
must be carefully maintained to prevent divergence from the RTL
implementation.

First, the physical memory and device configurations of the
functional software simulator and the RTL implementation should
be identical. This ensures the memory zones of Linux are the same
in both implementations, resulting in the same page allocation.

Next, interrupts in both implementations must be synchronized.
It is incredibly difficult to make interrupts happen simultaneously in
both implementations since the functional simulator has no timing
model. Instead, interrupts in the functional simulator are disabled
by default. Whenever an interrupt is raised from the RTL imple-
mentation, the interrupt cause is passed along with the commit logs
from the FPGA to the functional simulator. Then, the functional

1This may slow down simulation speed.

simulator is forced to handle the interrupt on the same target-cycle
as the RTL.

In addition, microarchitecture-dependent state needs to be syn-
chronized. Examples include performance-counter reads, atomic
memory operations, memory-mapped I/Os. Performance-counter
reads and atomic memory operations are easily identified by their
instruction encoding while memory-mapped I/Os are identified
by their memory addresses. Whenever such events happen, the
destination register values of the functional simulator are updated
from the FPGA’s commit logs.

Some processors support out-of-order completions for long-
latency instructions using a scoreboard to maintain register de-
pendencies (e.g. the Rocket processor [1]). In this case, the desti-
nation register values may not be available even though instruc-
tions have retired. We cannot ignore these instructions due to
microarchitecture-dependent state. Therefore, commit logs include
the information of whether or not the scoreboard is set by each
instruction. When the scoreboard is set, the destination register
values are not compared immediately. Instead, the functional simu-
lator saves the destination register value with its address. When the
instruction completes in the FPGA, its destination register value as
well as the register address are delivered from the FPGA to the func-
tional simulator and compared. For microarchitecture-dependent
state, the destination register value of the functional simulator is
updated with the value from the FPGA.

Finally, the permission bits in TLBs are modeled in the functional
simulator. This is because TLB flushes can be delayed by an OS
as a performance optimization, resulting in accesses to stale page-
table entries. Thus, whenever the TLBs in the FPGA are refilled,
the functional simulator updates its TLB models by using the TLB
tag and the permission bits of the page-table entry from the FPGA.
Memory accesses in the functional simulator also go through the
TLB models to match page faults between the function simulator
and the FPGA.

Other forms of complex golden functional model, such as out-
of-order memory systems, will require similar strategies to track
cycle-level interleaving of the RTL design.

5 GANGED-SIMULATION FOR RAPID ERROR
REPLAYS

To detect and replay errors efficiently, we exploit the determinism
of our FPGA-accelerated simulation by running two identical simu-
lators concurrently: a leading master instance, which detects the
target RTL bugs, and a lagging slave, which checkpoints the target
RTL (Figure 5).

The leading master checks for simulation errors by detecting
either an assertion failure or a mismatch between the golden model
and the simulator-generated log (Section 4). The master controls
the advance of the slave by periodically sending it packets over
TCP, each of which contains a target-cycle timestamp and an error
detection bit, indicating whether or not the master has encountered
an error at the timestamped target-cycle.

The slave cannot proceed until it receives a timestamped mes-
sage from the master. When it receives a message with a clear
error bit, it can safely advance up to the timestamped target-cycle
of the message. On the other hand, when the slave receives the

4

FPGA-accelerated RTL Simulation

Functional Simulation
Master Simulation Instance

Slave Simulation Instance

(Trillions of Instructions) Commit Log
Comparisons

Error

RTL State Snapshot

SW RTL Simulation

(Trillions of Instructions)

FPGA-accelerated RTL Simulation
(Trillions of Instructions)

Error

Error

(Hundreds of Instructions)

Public FPGA Cloud

Local Machine with
CAD Tool Licenses

Figure 5: Ganged-Simulation For Rapid Error Relay

message with a set error bit, it advances up to the timestamped
target-cycle minus L cycles to capture a L-cycle snapshot of the
ROI (Section 3). Since simulations are deterministic (Section 2), the
same error, which is detected by the master, also is captured by the
slave at the same target-cycle.

Finally, the captured RTL state snapshot can be replayed L cy-
cles in software RTL simulation until the same error appears, thus
providing a full-visibility waveform of the target over the ROI.
This waveform dramatically improves debuggability, helping RTL
designers find and fix the cause of the bug.

To mitigate the monetary costs, we use FPGAs in the cloud. This
provides a cheap, elastic source of very large FPGAs, without the
large initial capital expense. On the other hand, commercial CAD
tools are not allowed to run in the public cloud, and thus, error
snapshots are copied to and replayed in the local machine with the
CAD tool licenses.

6 RESULTS
We demonstrate the effectiveness of our methodology with a case
study of two RISC-V processor core designs and report on the types
of bugs found.

6.1 Target Designs, Golden Model,
Benchmarks, and Host Platform

Target Designs:We apply DESSERT to two open-source RISC-V
processors implemented with Chisel [2]: Rocket [1], a productized
scalar in-order processor, and an industry-competitive, open-source
out-of-order processor, BOOM-v2 [6]. Table 2 shows the processor
configurations used for this studywith the number of assertions and
the size of log entries. Log entries are generated when instructions
are committed. The processor and L1 cache represent the design-
under-test (DUT) and are supplied as RTL, while the supporting
L2 cache and DRAM are implemented as abstract timing models,
which can be configured at runtime [12].

Software Golden Model: We employ Spike [19] as a golden
model for the RISC-V ISA, which is modified for commit log com-
parison (Section 4.4). For software-based checking, commit logs
generated by Rocket of BOOM-v2 from the FPGA are compared
against Spike.

Benchmarks: We execute the SPEC2006int benchmark suite
on the target processors hosted in the FPGA. All benchmarks are
compiled using gcc version 6.1.0, and run on Linux kernel version

Parameter Rocket BOOM-v2
Fetch-width 1 2
Issue-width 1 4
Issue slots - 60
ROB size - 80

Ld/St entries - 16/16
Physical registers 32(int)/32(fp) 100(int)/64(fp)
Branch predictor - gshare: 16 KiB history

BTB entries 40 256
RAS entries 2 4

MSHR entries 2 2
L1 $ capacities 16 KiB or 32 KiB

ITLB and DTLB reaches 128 KiB / 128 KiB
L2 $ capacity and latency 1 MiB / 23 cycles

DRAM capacity and latency 2 GiB / 80 cycles
Assertions 123 601

Commit log entry width 60 B 64 B

Table 2: Parameters of the Target Processors.

4.6.2. For each benchmark, we built a BusyBox image including all
necessary files for a given benchmark within an initramfs.

Host Platform:We use Amazon F1 instances (f1.x2large) as
simulation host platforms. An f1.x2large instance is equipped
with Xilinx UltraScale+ VU9P and 1.5GB/s FPGA-CPU DMA.

6.2 Simulation Performance

Processor FPGA No-Checking FPGA Assertion FPGA Log
Rocket 52.7MHz 52.6MHz 21.3MHz

BOOM-v2 52.3MHz 52.1MHz 13.7MHz

Table 3: Simulation Rates

Table 3 shows the simulation rates of FPGA-accelerated simula-
tion with no error checking (FPGA No-Checking), hardware-based
checking from assertion synthesis (FPGA Assertion), and software-
based checking comparing logs from the FPGA against a golden
model (FPGA Log).

First of all, FPGA-accelerated RTL simulation guarantees high
simulation rates regardless of design complexities. In addition,
hardware-based assertion checking has almost no performance
overhead as the assertion checker is infrequently polled by the
software driver (Section 4.3).

On the other hand, software-based checking decreases simula-
tion rates because, in this case study, the functional simulator must
be run and compared in lock step (Section 4.4). As a result, the
log buffer is not quickly drained, resulting in frequent simulation
stalls. Notably, software-based checking has a larger performance
impact on BOOM-v2, which has higher IPC performance, and thus,
generates more commit log entries per cycle. However, exhaustive
software-based checking is still worthwhile as it can discover subtle
bugs not found by hardware-based assertion checking (Section 6.4).
We believe the simulation performance can be further improved
with decoupling and speculation of functional simulation, to reduce
synchronization frequency.

For comparison, the authors of the Strober framework [13] re-
ported its simulation rate was up to 3.56MHz, which was improved
to at most 40MHz on the Xilinx Zynq board by recent advances [12].
Note that these frameworks have no RTL debugging capabilities.

5

6.3 BOOM-v2 Assertion Failure Bugs Found
BOOM-v2 is a major microarchitectural update of the original
BOOM processor to improve its physical realizability [6]. BOOM-
v2 passes all ISA tests, random instruction tests, microbenchmark
tests, and even boots Linux. However, we noticed that some of the
SPECint2006 benchmarks that pass in BOOM-v1 fail in BOOM-v2.
Therefore, we used DESSERT to debug BOOM-v2.

Benchmark Assertion Cycle (B) Simulation
Failure Time (mins)

483.xalancbmk.test Invalid writeback in ROB 1.9 3.4
464.h264ref.test Pipeline hung 3.2 3.8

471.omnetpp.test Pipeline hung 3.3 3.9
445.gobmk.test Invalid writeback in ROB 14.9 9.0

471.omnetpp.ref Pipeline hung 62.6 22.2
401.bzip2.ref Wrong JAL target 473.7 164.6

Table 4: Assertion Triggers from BOOM-v2 running the
SPEC2006int Benchmark Suite.

Table 4 shows assertions caught from BOOM-v2 when running
the SPECint2006 benchmarks. Note that assertion messages are
shown in FPGA-accelerated RTL simulation when these assertions
are triggered. In addition, RTL state snapshots are taken before the
assertions are triggered (Section 5) and replayed in software RTL
simulation for full visibility of the internal signals.

With the waveform from the 1024-cycle error replay, we quickly
tracked down the cause of the invalid writeback in ROB assertion
to a buggy interaction between back-pressure queuing and branch
misspeculation that did not correctly kill instructions moving data
from the integer register file to the floating-point register file. In
general, the pipeline hung assertion is caused by pipeline resource
scarcities for various reasons, which are not found in the 1024-cycle
window, suggesting assertions describing more specific properties
be necessary. Also, the waveform from the 1024-cycle error replay
reveals the wrong JAL target assertion, which is triggered at almost
a half trillion target cycles, was caused by incorrectly handled
signed arithmetic in computing jump target addresses, which is
latent until the processor touches instructions allocated in a high
address memory region.

We caught all these assertion triggers and obtained full visibility
within 3 hours using two Amazon EC2 F1 instances. Therefore, the
total cost to catch and replay these errors is roughly $2 (compila-
tion) +2 × $1.56 (simulation) = $5.12 with spot instances, which is
extremely economical compared to commercial emulation tools.

6.4 Boom-v2 Commit Log Bugs found
Software-based checking comparing logs from an FPGA against
a software golden model can discover subtle bugs that may not
immediately affect the results of applications. We verify Linux boot
in Rocket and BOOM against the software golden model using
commit logs from the FPGA (Section 4.4). Linux boot in Rocket is
successfully verified against the golden model. 2 However, Linux
boot in BOOM-v2 fails with the following message:

2 We could not easily match floating-point loads due to what was a legally valid
ambiguity due to microarchitectural implementation differences between Rocket Chip
and the golden model (Spike). Newer versions of the RISC-V ISA close this specification
ambiguity.

Instruction mismatch at cycle: 669432906
PRIV PC INST REG

Last: 0 0x0000000000069ce0 (0 x00100793) x15 0x0000000000000001
SW : 0 0x0000000000069ce4 (0 x1404272f) x14 0x0000000000000000
FPGA: 1 0xffffffff80422a9c (0 x14011173) x 2 0xfffffffffcc54000

This shows BOOM jumps into Linux’s exception handler (PC
= 0xffffffff80422a9c) while executing lr.w a4, zero, (s0)
(0x1404272f). The waveform from the 1024-cycle replay shows
BOOM incorrectly triggers a store access fault for load-reserved
instructions. After fixing this bug, Linux boot in BOOM-v2 fully
matches against the golden model. This bug was found in less than
three minutes including target memory initialization, but would
have taken a month using VCS.

Commit log comparisons are also helpful to catch bugs that are
not easily discovered by assertions. For example, 403.gcc.test
fails in BOOM without assertion triggers. However, from commit
logs, the following mismatch is found:

Instruction mismatch at cycle: 2909587019
PRIV PC INST REG

Last: 0 0x00000000001d15fc (0 x14d76e63)
SW : 0 0x00000000001d1600 (0 x03079793) x15 0x0000000000000000
FPGA: 0 0x00000000001d1600 (0 x01813483) x 9 0x00000000004322e8

Note that this bug is found at 2.9 billion cycles in just 6 minutes;
Verilator would have taken nearly three weeks to reach this bug.

The commit log shows BOOM fetching the wrong instruction at
PC = 0x1d600. The waveform from the 1024-cycle replay shows
that BOOM’s fetch buffer is unable to accept more instructions and
applies back-pressure to the instruction cache, which experiences
a cache miss at the same time. Once the cache miss is resolved, the
wrong instruction is returned from the instruction cache. BOOM-v2
shares the frontend and the instruction cache with RocketChip, and
we used an old version of RocketChip 3 onwhich the current version
of BOOM-v2 4 is based. The frontend and the instruction cache
in the current version of RocketChip has since been completely
rewritten. We will verify BOOM-v2 again with a newer RocketChip
code base in the future.

7 CONCLUSION
By automatically transforming target RTL into an instrumented
FPGA-accelerated simulator and connecting the FPGA simulator
to a tracking functional golden model for checking, we can rapidly
find and diagnose bugs that only manifest after hundreds of billions
of target clock cycles, with little developer effort and at extremely
low cost, by taking advantage of cloud-hosted FPGA platforms.

ACKNOWLEDGEMENT
Research partially funded by DARPA Award Number HR0011-12-2-
0016, RISE Lab sponsor AmazonWeb Services, and ADEPT/ASPIRE
Lab industrial sponsors and affiliates Intel, HP, Huawei, NVIDIA,
and SK Hynix. Any opinions, findings, conclusions, or recommen-
dations in this paper are solely those of the authors and do not
necessarily reflect the position or the policy of the sponsors.

3 Commit Hash: 8c8d2af7141102adf8ccc65b929e740ce7ce189, Date: Feb 9th, 2017
4 Commit Hash: 70b94eefe6658a1444ca420ab86953c25665dae8, Date: Sep 12th, 2017

6

REFERENCES
[1] Krste Asanović et al. 2015. The Rocket Chip Generator. Technical Report

UCB/EECS-2016-17.
[2] Jonathan Bachrach et al. 2012. Chisel: constructing hardware in a scala embedded

language. In DAC.
[3] Somnath Banerjee and Tushar Gupta. 2012. Efficient online RTL debugging

methodology for logic emulation systems. In VLSI.
[4] Somnath Banerjee and Tushar Gupta. 2012. Fast and scalable hybrid functional

verification and debug with dynamically reconfigurable co-simulation. In ICCAD.
[5] Kevin Camera and Robert W. Brodersen. 2008. An integrated debugging environ-

ment for FPGA computing platforms. In FPL.
[6] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolić, David A. Patterson, and Krste

Asanović. 2017. BOOMv2: an open-source out-of-order RISC-V core. In First
Workshop on Computer Architecture Research with RISC-V (CARRV).

[7] Chin-Lung Chuang, Wei-Hsiang Cheng, Chien-Nan Jimmy C.-N.J. Liu, Dong-
Jung Lu, and Chien-Nan Jimmy C.-N.J. Liu. 2007. Hybrid Approach to Faster
Functional Verification with Full Visibility. IEEE Design & Test of Computers 24, 2
(2007), 154–162.

[8] FreeChips Project. 2017. Chisel 3 wiki. (2017). https://github.com/
freechipsproject/chisel3/wiki

[9] Intel. 2017. SignalTap II Logic Analyzer: Introduction & Getting Started
(ODSW1164). (2017). https://www.altera.com/support/training/course/odsw1164.
html

[10] Yousef S. Iskander, Cameron D. Patterson, and Stephen D. Craven. 2011. Improved
abstractions and turnaround time for FPGA design validation and debug. In FPL.

[11] Adam Izraelevitz et al. 2017. Hardware Reusability is FIRRTL Ground: Hardware
Construction Languages, Compiler Frameworks, and Transformations. In ICCAD.

[12] Donggyu Kim, Christopher Celio, David Biancolin, Jonathan Bachrach, and Krste
Asanović. 2017. Evaluation of RISC-V RTL with FPGA-Accelerated Simulation.
In First Workshop on Computer Architecture Research with RISC-V.

[13] Donggyu Kim, Adam Izraelevitz, Christopher Celio, Hokeun Kim, Brian Zimmer,
Yunsup Lee, Jonathan Bachrach, and Krste Asanović. 2016. Strober : Fast and
Accurate Sample-Based Energy Simulation for Arbitrary RTL. In ISCA.

[14] Dirk Koch, Christian Haubelt, and Jürgen Teich. 2007. Efficient hardware check-
pointing: concepts, overhead analysis, and implementation. In FPGA.

[15] E.A. Lee and D.G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9
(1987), 1235–1245.

[16] Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. 2016. Specification for
the FIRRTL Language. Technical Report UCB/EECS-2016-9.

[17] J. Marantz. 1998. Enhanced visibility and performance in functional verification
by reconstruction. In DAC.

[18] Andrew G. Schmidt, Bin Huang, Ron Sass, and Matthew French. 2011. Check-
point/restart and beyond: Resilient high performance computing with FPGAs. In
FCCM. https://doi.org/10.1109/FCCM.2011.22

[19] Andrew Waterman and Yunsup Lee. 2011. Spike, a RISC-V ISA Simulator. (2011).
https://github.com/riscv/riscv-isa-sim

[20] Xilinx. 2017. ChipScope Pro and the Serial I/O Toolkit. (2017). https://www.
xilinx.com/products/design-tools/chipscopepro.html

[21] Zan Yang, Byeong Min, and Gwan Choi. 2000. Si-emulation: system verification
using simulation and emulation. In International Test Conference.

7

https://github.com/freechipsproject/chisel3/wiki
https://github.com/freechipsproject/chisel3/wiki
https://www.altera.com/support/training/course/odsw1164.html
https://www.altera.com/support/training/course/odsw1164.html
https://doi.org/10.1109/FCCM.2011.22
https://github.com/riscv/riscv-isa-sim
https://www.xilinx.com/products/design-tools/chipscopepro.html
https://www.xilinx.com/products/design-tools/chipscopepro.html

	Abstract
	1 Introduction
	2 Compiler Passes for Deterministic FPGA-Accelerated RTL Simulation
	3 State Snapshotting and Initialization
	4 Error Checking from FPGAs
	4.1 Simulation APIs in Chisel
	4.2 Assertion and Log Synthesis
	4.3 Handling Assertions and Logs from FPGAs
	4.4 Commit Log Comparison for Microprocessors

	5 Ganged-Simulation For Rapid Error Replays
	6 Results
	6.1 Target Designs, Golden Model, Benchmarks, and Host Platform
	6.2 Simulation Performance
	6.3 BOOM-v2 Assertion Failure Bugs Found
	6.4 Boom-v2 Commit Log Bugs found

	7 Conclusion
	References

