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Security Optimization Research Lab.

Motivation

In IoT era…
§ More and more small devices with Tiny processors
§ More sensitive user information
§ Memory protection is a conventional defense
§ Virtual memory cannot be applied due to high complexity

Then How to Protect Memory?
§ MPU (memory protection unit in ARM) [3]
- reconfigured in order to constrain different access permissions for every 

process

§ SMART [4]
- is a new processor architecture including a special

§ TrustLite [7]
- links code regions to data regions requires intrusive modification of an 

existing processor
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Security Optimization Research Lab.

Motivation

In IoT era…
§ More and more small devices with Tiny processors
§ More sensitive user information
§ Memory protection is a conventional defense
§ Virtual memory cannot be applied due to high complexity

Then How to Protect Memory?
§ MPU (memory protection unit in ARM) [3]
- Inefficient

§ SMART [4], TrustLite [7]
- Invasive and permanent modification of the existing host processor
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Our Goal

Secure and efficient memory protection 
mechanism
§Minimize OS’s role
§Configure just once at the boot phase

Less design change of the host processor
§Conform to the modular design approach
§Several hardware components can be assembled 
together
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Overall Architecture

3 Main Hardware Components
§Security Interface
§Memory Region Protector
§Access Permission Matrix
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Implementation Details

Security Interface
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§ Just connecting wires

§Extracting inst_addr, 
data_type, data_addr

§Synchronizing these 3 
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§By referring EX 
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Implementation Details

Memory Region Protector
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 Access Permission Matrix 
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§CRS/DRS classify the 
region indexes for 
the current 
instruction

§Access Permission 
Matrix provides the 
legitimate 
permission for those 
indexes

§Decision Unit checks 
whether the 
permission is 
violated or not
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Implementation Details

Access Permission Matrix

§Has the access permission for code and data regions
§Check code-code access as well as code-data access
§Any access not permitted in the matrix will be illegal
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Experimental Results

Area Overhead
§ Xilinx Zynq-7000 board
§ Version 1.7 of RISC-V Rocket core with DefaultFPGASmallConfig

§ 16.5% over baseline system in LUTs+FFs
§ Memory Region Protector occupies 80% area within our total ß due to 

region boundary registers and selecting muxes
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Category Components LUTs FFs
Baseline
System

Rocket Core 9229 6894

Security Interface 80 195
Memory Region Protector 1066 1082
Access Permission Matrix 36 204
Total
% over Baseline System

1182
12.81%

1481
21.48%

Our
Hardware

Components
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Performance Consideration

Performance Overhead
§Security Interface
- Just probes wires so that incurs no impact to the critical path of 
the host CPU
- Zero impact

§Memory Region Protector
- Runs in parallel with the functional execution of the host
- Zero impact

§Access Permission Matrix
- In tiny processors, most applications are already fixed
- Code/data region boundaries and their permission can be statically 
allocated
- Negligible impact on the whole system performance
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Conclusion

Proposed Hardware Components
§ Memory Region Protector is the core component
§ This refers Access Permission Matrix
§ Security Interface extracts PC and memory target address

Low Overheads
§ Low area overhead and near zero performance overhead

More Flexible
§ In MPU [3] and PMP [5], region can be configured as a power-of-

two multiple of 4KB
§ But we can set the boundaries by arbitrary addresses
§ Moreover, CPU internal information extracted through Security 

Interface can be used for various hardware based security 
mechanisms
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Q&A
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