Building Hardware Components for
Memory Protection of Applications on
a Tiny Processor

Hyunyoung Oh*, Yongje Lee, Junmo Park, Myonghoon Yang and Yunheung Paek
Seoul National University, Korea

*Speaker

Outline

® Motivation
®© Qur Goal
® Qverall Architecture

®|mplementation Details
= Security Interface
» Memory Region Protector
= Access Permission Matrix
® Experimental Results
= Area Overhead
= Performance Consideration

® Conclusion

Motivation Egi

@ |n loT era...
= More and more small devices with Tiny processors
= More sensitive user information
= Memory protection is a conventional defense
= Virtual memory cannot be applied due to high complexity

® Then How to Protect Memory?

= MPU (memory protection unit in ARM) [3]

- reconfigured in order to constrain different access permissions for every
process

= SMART [4]
- is @ new processor architecture including a special
= TrustLite [7]

- links code regions to data regions requires intrusive modification of an
existing processor

SEOUL 3
oSy OR

Motivation Egi

@ |n loT era...
= More and more small devices with Tiny processors
= More sensitive user information
= Memory protection is a conventional defense
= Virtual memory cannot be applied due to high complexity

® Then How to Protect Memory?

= MPU (memory protection unit in ARM) [3]
- Inefficient

= SMART [4], TrustLite [/]
- Invasive and permanent modification of the existing host processor

Our Goal |

®Secure and efficient memory protection
mechanism
= Minimize OS's role
= Configure just once at the boot phase

®Less design change of the host processor
= Conform to the modular design approach

= Several hardware components can be assembled
together

Overall Architecture

RISC-V CPU
Security Mempry Acctes.s
> Region Permission
Interface .
Protector Matrix
< AMBA Interconnect (Master/Slave) >

Memory | Main
Controller Memory

®3 Main Hardware Components
= Security Interface
= Memory Region Protector
= Access Permission Matrix

Implementation Details

4

®Security Interface

o = Just connecting wires
EX Stage EMEM StageE WB Stage Security Interface
EX pe [BPIBMLp B WE pop-fo bl N . Extracting inst_addr,
............. CANORRINN- SRR N S data_type, data_addr
EXctrll| & . R T . S data_tpe |....pp
reg n
. data_addr

I I - Synchronizing these 3

: l Im " @ signals
R i DR * By referring EX
.. COﬂtI’O| reglster

Load Tagged Store
Address

ox

\ 4
IOpUSIXd
SSQIpPY

\ 4

w)}

Existing wire

Data Arra
= Additional wire ------------------

Data Cache

UNIVERSITY

Implementation Details

®Memory Region Protector

Access Permission Matrix

Code Region Selector

2| Memory

y Region Protector

Data Region Selector

CodeRegion0 (1/h) 4| DataRegion0
CodeRegionl (1/h) 4| dode_regi Decision Unit 7 DataReg}onl
CodeRegion2 (1/h) 4 o data_regi] DataReg}onz
um] ataRegion
CodeRegion3 (1/h) 4 g DataRegion3
CodeRegion4 (1/h) /) num_t 2 %’] DataRegiond
” S ataRegion
CodeRegion5 (I/h) /| 2 § 3] A
- £ 3 SE «— DataRegion5
CodeRegion6 (1/h) 4| = 35 DataRegiont
< “ le—| 10N
CodeRegion7 (I/h) 4 | g kY = L DataReglo 7
CodeEntries - ARCon
set code regions t_addr,
data aaar] MRP Controller data_addr 4
set data regions
signals from e——— AHB Slave Interface
security interface
AHB Interconnect
8

= CRS/DRS classify the
region indexes for
the current
Instruction

= Access Permission
Matrix provides the
legitimate
permission for those
Indexes

= Decision Unit checks
whether the
permission Is
violated or not

@Mu)m croup

Implementation Details

® Access Permission Matrix

OBJECT Code Code Code Data Data Data
SUBJEC Region0 Regionl Region2 Region0 Regionl Region2

Code RX R RW RW
Region0

Code
Regionl RX R

Code
Region? R RX RW R RW

Access Permissions ’J

» Has the access permission for code and data regions
» Check code-code access as well as code-data access
= Any access not permitted in the matrix will be illegal

R : Readable, W : Writable, X : eXecutable
- : No access 1s permitted

Experimental Results

® Area Overhead

= Xilinx Zyng-7000 board
= Version 1.7 of RISC-V Rocket core with DefaultFPGASmallConfig

Category Components LUTs FFs
Baseline 15 scket Core 9229 6394
System
Security Interface 80 195
Our Memory Region Protector 1066 1082
Hardware |Access Permission Matrix 36 204
Components |Total 1182 1481
% over Baseline System| 12.81% 21.48%

= 16.5% over baseline system in LUTs+FFs

= Memory Region Protector occupies 80% area within our total < due to
region boundary registers and selecting muxes

10

Son

Performance Consideration

® Performance Overhead

= Security Interface

- Just probes wires so that incurs no impact to the critical path of
the host CPU

- Zero impact

= Memory Region Protector
- Runs in parallel with the functional execution of the host
- Zero impact

= Access Permission Matrix

- In tiny processors, most applications are already fixed

- Code/data region boundaries and their permission can be statically
allocated

- Negligible impact on the whole system performance

SEOUL 1 ,]
Ao oR

Conclusion E“Ei

® Proposed Hardware Components
= Memory Region Protector is the core component
= This refers Access Permission Matrix
= Security Interface extracts PC and memory target address

® Low Overheads
= Low area overhead and near zero performance overhead

® More Flexible

= In MPU [3] and PMP [5], region can be configured as a power-of-
two multiple of 4KB

= But we can set the boundaries by arbitrary addresses

= Moreover, CPU internal information extracted through Security
Interface can be used for various hardware based security
mechanisms

SEOUL 12
oSy OR

Thank You

Hyunyoung Oh (hyoh@sor.snu.ac.kr)

- 2007~2017: RTL Engineer in Samsung Electronics

- 2017~ : Pursuing PhD in Seoul National University
Prof. Yunheung Paek is supervisor

SEOUL 13
o oR

