
11

Building Hardware Components for
Memory Protection of Applications on

a Tiny Processor

Oct 14 2017

Hyunyoung Oh*, Yongje Lee, Junmo Park, Myonghoon Yang and Yunheung Paek
Seoul National University, Korea

*Speaker

Security Optimization Research Lab.

Outline

Motivation
Our Goal
Overall Architecture
Implementation Details
§Security Interface
§Memory Region Protector
§Access Permission Matrix

Experimental Results
§Area Overhead
§Performance Consideration

Conclusion
2

Security Optimization Research Lab.

Motivation

In IoT era…
§ More and more small devices with Tiny processors
§ More sensitive user information
§ Memory protection is a conventional defense
§ Virtual memory cannot be applied due to high complexity

Then How to Protect Memory?
§ MPU (memory protection unit in ARM) [3]
- reconfigured in order to constrain different access permissions for every

process

§ SMART [4]
- is a new processor architecture including a special

§ TrustLite [7]
- links code regions to data regions requires intrusive modification of an

existing processor
3

Security Optimization Research Lab.

Motivation

In IoT era…
§ More and more small devices with Tiny processors
§ More sensitive user information
§ Memory protection is a conventional defense
§ Virtual memory cannot be applied due to high complexity

Then How to Protect Memory?
§ MPU (memory protection unit in ARM) [3]
- Inefficient

§ SMART [4], TrustLite [7]
- Invasive and permanent modification of the existing host processor

4

Security Optimization Research Lab.

Our Goal

Secure and efficient memory protection
mechanism
§Minimize OS’s role
§Configure just once at the boot phase

Less design change of the host processor
§Conform to the modular design approach
§Several hardware components can be assembled
together

5

Security Optimization Research Lab.

Overall Architecture

3 Main Hardware Components
§Security Interface
§Memory Region Protector
§Access Permission Matrix

6

Security
Interface

RISC-V CPU
Memory
Region

Protector

AMBA Interconnect (Master/Slave)

Memory
Controller

Main
Memory

Access
Permission

Matrix

Security Optimization Research Lab.

Implementation Details

Security Interface

7

A
ddress

Core
EX Stage MEM Stage WB Stage

EX_pc

Tagged
Address

Data Cache

Arb

Data Array

Load Store

Load

Store

inst_addr

data_type

data_addr

data_en

MEM_pc WB_pc

EX ctrl
reg

Security Interface

Existing wire
Additional wire

MUX

M
U

X
D

A
ddress

extender

§ Just connecting wires

§Extracting inst_addr,
data_type, data_addr

§Synchronizing these 3
signals

§By referring EX
control register

Security Optimization Research Lab.

Implementation Details

Memory Region Protector

8

 Access Permission Matrix

AHB Interconnect

MRP Controller

Code Region Selector Data Region Selector

Memory Region Protector

set code regions

set data regions

inst_addr,

data_addr

AHB Slave Interface

code_region_
num

data_addr

data_region_
num

code_region_
num_t

signals from
security interface

Decision Unit

§CRS/DRS classify the
region indexes for
the current
instruction

§Access Permission
Matrix provides the
legitimate
permission for those
indexes

§Decision Unit checks
whether the
permission is
violated or not

Security Optimization Research Lab.

Implementation Details

Access Permission Matrix

§Has the access permission for code and data regions
§Check code-code access as well as code-data access
§Any access not permitted in the matrix will be illegal

9

Security Optimization Research Lab.

Experimental Results

Area Overhead
§ Xilinx Zynq-7000 board
§ Version 1.7 of RISC-V Rocket core with DefaultFPGASmallConfig

§ 16.5% over baseline system in LUTs+FFs
§ Memory Region Protector occupies 80% area within our total ß due to

region boundary registers and selecting muxes

10

Category Components LUTs FFs
Baseline
System

Rocket Core 9229 6894

Security Interface 80 195
Memory Region Protector 1066 1082
Access Permission Matrix 36 204
Total
% over Baseline System

1182
12.81%

1481
21.48%

Our
Hardware

Components

Security Optimization Research Lab.

Performance Consideration

Performance Overhead
§Security Interface
- Just probes wires so that incurs no impact to the critical path of
the host CPU
- Zero impact

§Memory Region Protector
- Runs in parallel with the functional execution of the host
- Zero impact

§Access Permission Matrix
- In tiny processors, most applications are already fixed
- Code/data region boundaries and their permission can be statically
allocated
- Negligible impact on the whole system performance

11

Security Optimization Research Lab.

Conclusion

Proposed Hardware Components
§ Memory Region Protector is the core component
§ This refers Access Permission Matrix
§ Security Interface extracts PC and memory target address

Low Overheads
§ Low area overhead and near zero performance overhead

More Flexible
§ In MPU [3] and PMP [5], region can be configured as a power-of-

two multiple of 4KB
§ But we can set the boundaries by arbitrary addresses
§ Moreover, CPU internal information extracted through Security

Interface can be used for various hardware based security
mechanisms

12

Security Optimization Research Lab.

Q&A

13

Thank You

Hyunyoung Oh (hyoh@sor.snu.ac.kr)
- 2007~2017: RTL Engineer in Samsung Electronics
- 2017~ : Pursuing PhD in Seoul National University

Prof. Yunheung Paek is supervisor

