GRVI Phalanx Update:
A Massively Parallel RISC-V FPGA Accelerator Framework

Jan Gray | jan@fpga.org | http://fpga.org
FPGA Datacenter Accelerators Are *Almost* Mainstream

- Catapult v2. Intel += Altera. OpenPOWER CAPI. AWS F1. Baidu. Alibaba. Huawei ...

- FPGAs as computers
 - Massively parallel, customized, connected, versatile
 - High throughput, low latency, low energy

- Great, except for two challenges
 - Software: C++ workload \rightarrow ??? \rightarrow FPGA accelerator?
 - Hardware: “tape out” a complex SoC daily?
GRVI Phalanx: FPGA Accelerator Framework

• For *software-first* accelerators:
 – Run parallel software on 100s of soft processors
 – Add custom logic as needed
 = More 5 second recompiles, fewer 5 hour PARs

• **GRVI**: FPGA-efficient RISC-V RV32I soft CPU

• **Phalanx**: processor/accelerator fabric
 – Many clusters of PEs, RAMs, accelerators, I/O
 – Message passing in a PGAS across a ...

• **Hoplite NoC**: FPGA-optimal fast/wide 2D torus
Why RISC-V?

• Open ISA, welcomes innovation
• Comprehensive infrastructure and ecosystem
 – Specs, tests, simulators, cores, compilers, libs, FOSS
• As with LLVM, research will accrue to RISC-V

• Its simple ISA allows an efficient FPGA soft CPU
GRVI: Austere RISC-V Processing Element

• Simpler, smaller processors ⇒ more processors ⇒ more task and memory parallelism

• GRVI core
 – RV32I, *minus* CSRs, exceptions, *plus* mul*, lr/sc
 – 3 stage pipeline (fetch, decode, execute)
 – 2 cycle loads; 3 cycle taken branches/jumps
 – *Typically 320 LUTs @ 375 MHz ≈ 0.7 MIPS/LUT*
GRVI RV32I Microarchitecture
GRVI RV32I Datapath: ~250 LUTs
GRVI Cluster:
0-8 PEs + 32-256 KB Shared Memory
GRVI Cluster Tile: ~3500 LUTs
Composing Clusters with Message Passing on a Hoplite NoC

- Hoplite: rethink FPGA NoC router architecture
 - No segmentation/flits, VCs, buffering, credits
 - Unidirectional rings
 - Deflecting dimension order routing of whole msgs
 - Simple; frugal; wide; fast: 1-400 Gbps/link

- **1% area×delay** of FPGA-tuned VC flit routers
Example Hoplite NoC

256b links @ 400 MHz = 100 Gb/s links; <3% of FPGA
GRVI Cluster with NoC Interfaces

300 = header + 32b msg dest addr + 256b msg data

CARR2017: 2017/10/14
10×5 Clusters × 8 GRVI PEs

= 400 GRVI Phalanx (KU040, 12/2015)
Parallel Programming Models?

• *Small* kernels, local or PGAS shared memory, message passing, memcpy/RDMA DRAM

• Current: multithreaded C++ w/ message passing
 – Uses GCC for RISC-V RV32IMA. *Thank you!*

• Future: OpenCL, KPNs, P4, ...
 – Accelerated with custom FUs, AXI cores, RAMs
11/30/16: Amazon AWS EC2 F1!
F1’s UltraScale+ XCVU9P FPGAs

- 1.2 M 6-LUTs
- 2160 36 Kb BRAMs (8 MB)
- 960 288 Kb URAMs (30 MB)
- 6840 DSPs
1680 RISC-Vs, 26 MB CMEM (VU9P, 12/2016)

- 30×7 clusters of { 8 GRVI, 128 KB CMEM, router }
- First kilocore RISC-V, and the most 32b RISC cores on a chip in any technology
1, 32, 1680 RISC-Vs
1680 Core GRVI Phalanx Statistics

<table>
<thead>
<tr>
<th>Resource</th>
<th>Use</th>
<th>Util. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical nets</td>
<td>3.2 M</td>
<td>-</td>
</tr>
<tr>
<td>Routable nets</td>
<td>1.8 M</td>
<td>-</td>
</tr>
<tr>
<td>CLB LUTs</td>
<td>795 K</td>
<td>67.2%</td>
</tr>
<tr>
<td>CLB registers</td>
<td>744 K</td>
<td>31.5%</td>
</tr>
<tr>
<td>BRAM</td>
<td>840</td>
<td>38.9%</td>
</tr>
<tr>
<td>URAM</td>
<td>840</td>
<td>87.5%</td>
</tr>
<tr>
<td>DSP</td>
<td>840</td>
<td>12.3%</td>
</tr>
</tbody>
</table>

Performance Metrics

- **Frequency**: 250 MHz
- **Peak MIPS**: 420 GIPS
- **CRAM Bandwidth**: 2.5 TB/s
- **NoC Bisection BW**: 900 Gb/s
- **Power (INA226)**: 31-40 W
- **Power/Core**: 18-24 mW/core
- **MAX VCU118 Temp**: 44°C

Development Tools

- **Vivado**: 2016.4 / ES1
- **Max RAM use**: ~32 GB
- **Flat build time**: 11 hours
- **Tools bugs**: 0

Additional Notes
- >1000 BRAMs + 6000 DSPs available for accelerators
Amazon F1.2xlarge Instance

Diagram showing the components of an Amazon F1.2xlarge instance:
- XEON
- ENA
- NVMe
- DRAM 122 GB
- DRAM 64 GB
- VU9P
Amazon F1.16xlarge Instance
Recent Work

• Bridge Phalanx and AXI4 system interfaces
 – Message passing with host CPUs (x86 or ARM)
 – DRAM channel RDMA request/response messaging

• “SDK” hardware targets
 – 1000-core AWS F1 (<$2/hr)
 – 80-core PYNQ (Z7020) ($65 edu)
GRVI Phalanx on Zynq with AXI Bridges
PYNQ-Z1 Demo: Parallel Burst DRAM Readback Test:
80 Cores × 2^{28} × 256 B
GRVI Phalanx on AWS F1 (WIP)
4Q17 Work in Progress

- Complete initial F1.2XL and F1.16XL ports
- GRVI Phalanx SDK
 - Specs, libraries, examples, tests
 - As PYNQ Jupyter Python notebooks, bitstreams
 - AMI+AFI in AWS Marketplace
- Full instrumentation – event counters; tracing
- Evaluate porting effort & perf on workloads TBD
In Conclusion

• Enable programmers to access massive reconfigurable / memory parallelism
• Frugal design enables competitive performance
• Value proposition unproven, awaits workloads
• SDK coming soon, enabling parallel RISC-V research and teaching on 80-8,000 core systems

Thank you