Diplomatic Design Patterns vl e
A TileLink Case Study

10/14/2017

* Rocket-Chip Ecosystem
* Diplomacy

* TileLink
* Design Patterns

* DRYIng out Parameterization
* Generation with a View
« Compositional Cake

* Deployment

: B siFive

The Rocket-Chip Ecosystem for RISC-V

* Chisel

A Domain-Specific Language for hardware construction embedded in Scala

* Rocket-Chip

* A collection of hardware generators implemented in Chisel
* Diplomacy

* A Scala framework for negotiating parameters between Chisel generators
* TileLink

* A parameterized chip-scale shared-memory interconnect protocol

3 @ SiFive

Diplomacy

When Chisel Isn’t Enough

*We'd like to be able to see everything that will be in the system
before we even start to emit any hardware descriptions

* How early can we detect misconfiguration?

* <> considered harmful
» wire width inference can mask problems

* Generators are nice...

* but parameterization itself is a source of complexity
* but each generator needs to agree with the others about what to generate

5 @ SiFive

Diplomatic Parameterization

» Graphical abstraction of interconnectivity
* Directed Acyclic Graph (DAG)

* Node

* point where parameterized hardware is going to be generated

 Edge

» a directed pairing between a master and slave interface

* Modules may have many nodes and nodes may have many edges

6 @ SiFive

SiFive

Simple Example Graph

AXI Bridge

O
©

SPI Slave

Crossbar Clock Crossing Crossbar

e

é\

PCle Bridge \

O

master slave

Actual (small) Rocket-Chip Graph

i frontend rocket : i ¥ . Ya“\(el.' I
I I ITLTOP‘X\ﬁX\M ADel {)(\AB\"HE I
[H
‘ E v Fixer - X idg :

I dcache I TLBU“E TL‘:\FO T\-Sp\"“egystemBuS -"‘_B\-\ﬁer T\"\N‘dthw‘ ﬂ P S S S B B BN B S E— —Em- I E— \J’

I\B s G@Dsﬂ——l—ﬂzﬂaﬂgqgﬂﬁ—ﬂsﬂﬁwﬁ@l L] A\
. matd r Xk
Om\cp\uto Buffeb,z = F‘,agn’\ente = I
o ﬁnﬁ{a\(ﬁ""— T = Eidget o ixer Y A T eripheryBus T\ _1
— Aﬁ\dﬂpﬁqﬂaﬂ. pe i T ek -y) proéiC .‘.‘._.;\EQF }
. ; I
{] M W= = W=
g e e = Bee = B:
I e = 2 b H I I I
! : | ERIF LS .
\ I l
— —— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— —_— /
I I
\ = /
L :
1Broade®t ciyrer iLme@th-‘gTﬂﬁm—m(ﬂﬂ\m— AL e /\
CH——

1
!
\

——_—_—_—_—_—__/

- 8 @SiFive

What Parameters Can Be Diplomatic?

T
T
T
T

ne cardinality of sources connected to a particular sink (transitive)
ne cardinality of sinks connected to a particular source (transitive)
ne type and size of operations issues by each master and slave

ne type and size of operations allowed on a particular address

* Other properties governing allowed behavior on particular regions
(e.g. modifiability, executability, cacheability)

* Ordering requirements on operations over subgraphs (e.g. FIFO)

* Presence of certain fields within control wire bundles

* Widths of fields within with control or data wire bundles

* Presence of entire virtual networks or channels

9 @ SiFive

How Diplomacy Negotiates

* Two-phase elaboration

* First, graph is created and parameters are negotiated (LazyModules)
 Second, Chisel hardware is elaborated (Module implementations)

* During the first (“diplomatic”) phase:
* One set of parameters flow outwards from master to slave nodes
* One set of parameters flow inwards from slave to master nodes
* Adapter nodes can modify parameters flowing through them

* All modules can place requirements on parameter values

10 @ SiFive

Short Circuiting the Debug Loop

* What happens when negotiation fails?

* Error at Scala runtime

* What doesn'’t happen?
» Chisel elaboration
* Verilog emission
* Verilog compilation
» Simulation execution
» Waveform debugging

Big tape-out

' pe—in
ASIC flow
FPGA

C+
e@: ification
design
+ implementation

i @ SiFive

TileLink

TileLink: Graphical Structure

Processor
Cache
o B Crossbar , | Memory controller
O L
5 |2 > | , mn L
A [S L agent [F-—A[4 £
% % |] E =L
& S
' Agent I
Processor] ™ e
e £ 8 Memory-mapped
LL ;> =l
t B ?"/% %I\ device
o |Q s "
-S':n % L] \B_ =
= 9 o
3 J|
)
—

) SiFive

TileLink: Graphical Structure

Configuration interface

* Directed Acyclic Graph (DAG) (again)

* Agent (Node)

* point where messages are created

* Link (Edge)
» a directed pairing between two agents’ Incoming

master and slave interface Cfﬁﬁﬁgaf

* Modules may have many agents and

S‘lﬂé;fe..-ﬁlF H Slave IF

agents may have many links

S

Agent

Agent

Crossbar

Outgoing
crossbar
links

4 vall Ve

TileLink: Directed Channels

SiFive

Module

Link (Edge)

Module

15 @ SiFive

TileLink: Modularity

* Spec defines threes levels of

Conformance TL-UL | TL-UH | TL-C
Cache line transfers : : y
Channels B+C+E : y
* Rocket-Chip uses Diplomacy to sl A
achieve even finer granularity Hint operations | y y
Get/Put accesses y y y

* Individual links specialized to the types
of messages sent

16 @ SiFive

TileLink: Composability

* Generality of interfaces

* All agents use the same transaction structure
* Scalability rules for hierarchy
* DAG prevents deadlock
» Strict prioritization of channels
 Necessary for individual transactions to make
forward progress

* Decoupled handshaking rules

» Limit when and why messages can be rejected

* Deadlock freedom and forward progress guarantees!

Link (Edge)

7 @ SiFive

TileLink: Transaction Structure

Operations: All Permission Transfer: Acquire Permission Transfer: Release Permission Transfer: Probe
Client Manager Client Manager Client Manager Client Manager

Operati Acoui Rel
C}\ peration | O\ couire | k eleasa | | Probe /’O m

O)

https://www.sifive.com/documentation/tilelink/tilelink-spec/

1 dirty data

without
caching |

\O Xac

| complete
xact

I I I I
I I I I
\ \J \J \

Design Patterns

DRYing out parameterization

* Don't Repeat Yourself

* “Every piece of knowledge must have a single , unambiguous, authoritative
representation within a system”

SPI Slave

« Crossi ossbar

Crossbar

AXI Bridge E)
3 reg
o e (Glom 5"

em

PCle Bridge SRAM

master slave 20 @ SI Five

Hardware Generation With A View

ExampleRocketSystem

y - tile .
rocket
ntend . o ot
TLTOF\X\ X\A\d\“d A}(\ADQ r%wser X\AB\Af e
[H P)) [y WDI . O
e e O e N e s -
S : =
rer . i %
tileBus 118U FFOFY i e s temBus ToUtE= \Widthwido
| — ~
T T N T R T S R = mmeae
\ y | QTL oo et
L f gn’\e
idoget car 1 proRn ‘Y\-‘BUf i”erl heryBus TU '@
adINAEar a9y aUse ANATO TL\N'\dt\’\W‘dg,__guﬁe\’.%_ﬂFOF\x i phery ' |
e ==
O O = (0 = 0 = [\——l—=—"plh——lF
L :
TLBYOadcaS pilter \j,uﬁe"‘AMemof\fBu?\—_guﬁe"—5 L TOARA axatnm
N L g I ORI R T ol - o] { o
2 @ Sikive

SiFive

Combinational Composition

* Thin adapters that each serve a specific, orthogonalized function
» Zero-cycle response time is allowed (support is actually mandatory)

» Simplify verification at no design cost

(ixel ; 1 doge
teuffer o pIFOF Tisphittel LBuffer—_ | igenwi 9

ystemBus 1

61
Y

64
YY

614

Combinational Composition

» Modify control signals
» fragment burst messages into a series of single beat messages

* Modify message field widths
» widen the width of the data bus plane

* Manage inter-message transaction requirements
» enforce FIFO ordering across a series of messages and responses

ixer : 1 1qe
1L Buffer 1 pirOF! T\—Sp\‘uerSVStemBus usuffer— i 4taWidd

SN g§|$—§\:%%'%§;§

614

64 6(4

s B3 siFive

Sequential Composition

* Decoupled nature of TileLink interfaces makes it easy to insert
buffering at arbitrary point in the graph

£ %

LBuffer 1y pIFOFE TLSplitte

b
[(s]

<
[(e]

>

>

<
[(e]

>
>

{

SystemBu

5 TLBuTEr- ygenWhd9®

614614

b
[s]

—

<
[te]

r o
>

<
O f
[t=]

2

>
>

<t
[¥e]

\

« LS SiFive

Hierarchical Composition

* Any sub-graph can be swapped out for a different sub-graph that

provides the same properties
* Inserting caches (or chains of caches)
* Filtering addresses into banks
» Transparently crossing clock domains
* Transparently converting between protocols

 Scala traits

* Interfaces that can provide concrete members
* Support multiple inheritance

* Build a system from layered components (cake pattern)

25 @ SiFive

Compositional Cake

// Compile and elaborate correct hardware:

class SingleCoreSystem extends HasOneCore with ConnectsIncoherently
class DualCoreSystem extends HasTwoCores with ConnectsViaBroadcastHub
class DualCorelL2System extends HasTwoCores with ConnectsVial2Cache

// Fails at Scala compile time due to missing TLSourceNode instance:
class IncompleteSystem extends ConnectsVial2Cache

// Fails during elaboration due to failed requirement:

class UnsafeSystem extends HasTwoCores ConnectsIncoherently
val processorMasterNode = xbar.node
cores.foreach { ¢ => xbar.node :

c.node }

26 @ SiFive

Deployment

Rocket-Chip: 2017 Rewrite

* Piecewise conversion to Diplomatic TileLink and AMBA
» using adapters between sub-graphs with different protocol versions

e Started from slaves and moved inward to masters

* Took about 6 months to complete

* Only remaining non-diplomatic Modules are the top-level test
harness and leaf modules inside of the Rocket tiles

28 @ SiFive

Future Work: Diplomacy

 Automatic punching of 10s via cross-module edges
» Ease arbitrary changes to granularity of module hierarchicalization

» Conversion between clock domains
» Cross at boundary of automatically inserted module wrappers

» Lightweight support for interrupts and other simple types that need
to be routed to arbitrary locations, including to top-level IOs

* Diplomatic RoCC

29 @ SiFive

Future Work: TileLink

» Critical Word First for cache blocks
* Richer performance hints
* Cache coherence protocol parameterization

* Deadlock freedom and forward progress proofs, formal models

* ChipLink

30 @ SiFive

