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The Rocket-Chip Ecosystem for RISC-V

* Chisel

A Domain-Specific Language for hardware construction embedded in Scala

* Rocket-Chip

* A collection of hardware generators implemented in Chisel
* Diplomacy

* A Scala framework for negotiating parameters between Chisel generators
* TileLink

* A parameterized chip-scale shared-memory interconnect protocol
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Diplomacy




When Chisel Isn’t Enough

*We'd like to be able to see everything that will be in the system
before we even start to emit any hardware descriptions

* How early can we detect misconfiguration?

* <> considered harmful
» wire width inference can mask problems

* Generators are nice...

* but parameterization itself is a source of complexity
* but each generator needs to agree with the others about what to generate
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Diplomatic Parameterization

» Graphical abstraction of interconnectivity
* Directed Acyclic Graph (DAG)

* Node

* point where parameterized hardware is going to be generated

 Edge

» a directed pairing between a master and slave interface

* Modules may have many nodes and nodes may have many edges
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Simple Example Graph
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Actual (small) Rocket-Chip Graph
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What Parameters Can Be Diplomatic?

T
T
T
T

ne cardinality of sources connected to a particular sink (transitive)
ne cardinality of sinks connected to a particular source (transitive)
ne type and size of operations issues by each master and slave

ne type and size of operations allowed on a particular address

* Other properties governing allowed behavior on particular regions
(e.g. modifiability, executability, cacheability)

* Ordering requirements on operations over subgraphs (e.g. FIFO)

* Presence of certain fields within control wire bundles

* Widths of fields within with control or data wire bundles

* Presence of entire virtual networks or channels
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How Diplomacy Negotiates

* Two-phase elaboration

* First, graph is created and parameters are negotiated (LazyModules)
 Second, Chisel hardware is elaborated (Module implementations)

* During the first (“diplomatic”) phase:
* One set of parameters flow outwards from master to slave nodes
* One set of parameters flow inwards from slave to master nodes
* Adapter nodes can modify parameters flowing through them

* All modules can place requirements on parameter values
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Short Circuiting the Debug Loop

* What happens when negotiation fails?

* Error at Scala runtime

* What doesn'’t happen?
» Chisel elaboration
* Verilog emission
* Verilog compilation
» Simulation execution
» Waveform debugging

Big tape-out
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TileLink: Graphical Structure
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TileLink: Graphical Structure

Configuration interface

* Directed Acyclic Graph (DAG) (again)

* Agent (Node)

* point where messages are created

* Link (Edge)
» a directed pairing between two agents’ Incoming

master and slave interface Cfﬁﬁﬁgaf

* Modules may have many agents and
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TileLink: Directed Channels

SiFive

Module

Link (Edge)

Module
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TileLink: Modularity

* Spec defines threes levels of

Conformance TL-UL | TL-UH | TL-C
Cache line transfers : : y
Channels B+C+E : y
* Rocket-Chip uses Diplomacy to sl A
achieve even finer granularity Hint operations | y y
Get/Put accesses y y y

* Individual links specialized to the types
of messages sent
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TileLink: Composability

* Generality of interfaces

* All agents use the same transaction structure
* Scalability rules for hierarchy
* DAG prevents deadlock
» Strict prioritization of channels
 Necessary for individual transactions to make
forward progress

* Decoupled handshaking rules

» Limit when and why messages can be rejected

* Deadlock freedom and forward progress guarantees!

Link (Edge)
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TileLink: Transaction Structure

Operations: All Permission Transfer: Acquire Permission Transfer: Release Permission Transfer: Probe
Client Manager Client Manager Client Manager Client Manager
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DRYing out parameterization

* Don't Repeat Yourself

* “Every piece of knowledge must have a single , unambiguous, authoritative
representation within a system”
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Hardware Generation With A View

ExampleRocketSystem
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Combinational Composition

* Thin adapters that each serve a specific, orthogonalized function
» Zero-cycle response time is allowed (support is actually mandatory)

» Simplify verification at no design cost

( ixel ; 1 doge
teuffer o pIFOF Tisphittel LBuffer—_ | igenwi 9

ystemBus 1

61
Y

64
YY

614




Combinational Composition

» Modify control signals
» fragment burst messages into a series of single beat messages

* Modify message field widths
» widen the width of the data bus plane

* Manage inter-message transaction requirements
» enforce FIFO ordering across a series of messages and responses
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Sequential Composition

* Decoupled nature of TileLink interfaces makes it easy to insert
buffering at arbitrary point in the graph
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Hierarchical Composition

* Any sub-graph can be swapped out for a different sub-graph that

provides the same properties
* Inserting caches (or chains of caches)
* Filtering addresses into banks
» Transparently crossing clock domains
* Transparently converting between protocols

 Scala traits

* Interfaces that can provide concrete members
* Support multiple inheritance

* Build a system from layered components (cake pattern)
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Compositional Cake

// Compile and elaborate correct hardware:

class SingleCoreSystem extends HasOneCore with ConnectsIncoherently
class DualCoreSystem extends HasTwoCores with ConnectsViaBroadcastHub
class DualCorelL2System extends HasTwoCores with ConnectsVial2Cache

// Fails at Scala compile time due to missing TLSourceNode instance:
class IncompleteSystem extends ConnectsVial2Cache

// Fails during elaboration due to failed requirement:

class UnsafeSystem extends HasTwoCores ConnectsIncoherently
val processorMasterNode = xbar.node
cores.foreach { ¢ => xbar.node :

c.node }
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Deployment




Rocket-Chip: 2017 Rewrite

* Piecewise conversion to Diplomatic TileLink and AMBA
» using adapters between sub-graphs with different protocol versions

e Started from slaves and moved inward to masters

* Took about 6 months to complete

* Only remaining non-diplomatic Modules are the top-level test
harness and leaf modules inside of the Rocket tiles
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Future Work: Diplomacy

 Automatic punching of 10s via cross-module edges
» Ease arbitrary changes to granularity of module hierarchicalization

» Conversion between clock domains
» Cross at boundary of automatically inserted module wrappers

» Lightweight support for interrupts and other simple types that need
to be routed to arbitrary locations, including to top-level IOs

* Diplomatic RoCC
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Future Work: TileLink

» Critical Word First for cache blocks
* Richer performance hints
* Cache coherence protocol parameterization

* Deadlock freedom and forward progress proofs, formal models

* ChipLink
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