
Labeled RISC-V: A New Perspective on Software-Defined
Architecture

Zihao Yu, Bowen Huang, Jiuyue Ma, Ninghui Sun, Yungang Bao
State Key Laboratory of Computer Architecture, ICT, CAS
{yuzihao,huangbowen,majiuyue,snh,baoyg}@ict.ac.cn

ABSTRACT
Traditional computer architectures are insufficient to convey im-
portant high-level requirements of applications to the hardware.
These requirements include QoS and security, which are extremely
important to data centers in the cloud era. To guarantee better QoS
in data centers, we propose a new computer architecture LvNA
(Labeled von Neumann Architecture) that leverages labeling mech-
anism and programmable label-based policies to enable computer
hardware with more software-defined functionalities.

In this paper, we will present the motivations and design prin-
ciples of LvNA as well as an FPGA-based prototype (i.e., labeled
RISC-V). We demonstrate how to reconstruct the RISC-V’s in-order
core RocketChip to be a software-defined architecture with the con-
cept of LvNA. Additionally, we will explore the change of software
stack in data center to make better use of LvNA, including hypervi-
sors, OS kernels and cluster management systems, compilers, and
runtime libraries.

CCS CONCEPTS
• Computer systems organization→ Cloud computing;

KEYWORDS
label, software-defined, QoS
ACM Reference Format:
Zihao Yu, Bowen Huang, Jiuyue Ma, Ninghui Sun, Yungang Bao. 2017.
Labeled RISC-V: A New Perspective on Software-Defined Architecture. In
Proceedings of Computer Architecture Research with RISC-V, Boston, MA, USA,
October 2017 (CARRV 2017), 7 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Nowadays datacenters have become the infrastructure of informa-
tion technology. According to some studies [35], most of requests
of online applications will spend nearly half of their lifetime in
datacenters to be processed. Meanwhile, the cost of datacenters is
very high. It is revealed that it costs 15 billions dollars for Microsoft
to build a new datacenter [15].

In fact, datacenters confront the conflict of high utilization and
high Quality of Service(QoS). On one hand, to achieve high uti-
lization, one straightforward approach is to co-locate workloads

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CARRV 2017, October 2017, Boston, MA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

or virtual machines (VM) on each physical server. In this manner,
However, co-location induces contention for various shared hard-
ware resources (such as CPU cores, caches, memory bandwidth,
and network switches [14]), as well as shared software resources
(e.g., page caches, socket buffers, and multiple layers of queueing
buffers [14, 21]). Such contention causes unpredictable performance
variability [28, 29, 31] that is amplified at data center scales [14]
where online services involve tens to hundreds of servers in pro-
cessing even a single user request [32]. Moreover, such performance
variability occurs frequently due to the unpredictability of frequent,
short-running workloads. A month of profiling data from a 12,000-
server Google data center shows that more than a million jobs ran
for only a few minutes [36].

On the other hand, to guarantee QoS of latency-critical online
services, data center operators or developers tend to avoid sharing
by either dedicating resources or exaggerating reservations for
online services in shared environments. In fact, without co-location
industry-wide utilization is even lower — only between 6% [20]
to 12% [2]. For shared environments, Reiss et al. [36] verify that
developers indeed exaggerate resource requirements: in their 12,000-
server data center, actual CPU and memory utilizations are only
20% and 40% respectively, while the average reservations are 75%
and 60%.

It is true that industry are struggling with this conflict. Google’s
batch-workload data centers achieve 75% CPU utilization, on aver-
age [12]. But typical online-service datacenters exhibit only about
30% CPU utilization, on average, much lower than batch-workload
data centers [12]. Amazon’s cloud service tries to improve utiliza-
tion, without the guarantee of QoS. But DropBox announced that
they dropped Amazon’s cloud to have better overall user experi-
ence [9].

In this paper, we ask the following question: Can we obtain
a guaranteed QoS for a critical application, meanwhile trying to
improve the utilization of the datacenter? Specifically, co-location
is an effective way to improve utilization. However, this will lead to
interference over different resources, especially for those hardware
resources without effective management. Therefore, we should
improve the control ability for traditional hardware. In face, Dick
Sites, an expert of datacenter in Google, has called for innovation
of hardware support to solve this conflict. The community white
paper 21st Century Computer Architecture [10] also suggests
that “new, higher-level interfaces are needed to encapsulate and convey
programmer and compiler knowledge to the hardware, resulting in
major efficiency gains and valuable new functionality.”

To improve the control ability of hardware, there are two chal-
lenge.

How to give hardware the ability of identifying requests
from critical applications? It is possible for hardware to give

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

CARRV 2017, October 2017, Boston, MA, USA Zihao Yu, Bowen Huang, Jiuyue Ma, Ninghui Sun, Yungang Bao

high priority to requests from critical application, only after hard-
ware can identify them. To solve this challenge, we propose a new
architecture: Labeled vonNeumannArchitecture(LvNA) [11]. LvNA
is inspired from Software-Defined Network. There are four fea-
tures in LvNA. (1) Fine-grain Object - attaching a label to each
memory and I/O request. (2) Semantic-Gap - correlating labels
with VM/Proc/Thread/Var. (3) Propagation - propagating labels in
a whole machine. (4) DiffServ - providing differentiated services
based on different label-indexed rules. With these features, it is
easy for hardware to identify the software source of a request.

How to mitigate the conflict of high QoS and high utiliza-
tion with such an ability?We propose Programmable Architec-
ture for Resourcing-on-Demand(PARD) [27], a mechanism leverag-
ing labeling to perform request-level control with software/hardware
co-design. To solve this problem, there are further four steps to
go. (1) To deploy DiffServ into each shared resources in hardware,
PARD uses parameter tables to store label-based control policies. (2)
To know whether the critical application is interfered, PARD uses
statistics tables to monitor the usage of each shared resources. (3) To
protect the critical application from future interference, PARD uses
trigger tables to adjust control policies once interference occurs. (4)
To manage these programmable tables in a unified manner, PARD
uses adapt platform resource manager(PRM) to abstract these tables
as a device file tree.

With the concept of LvNA, we reconstruct RocketChip [5] to
a software-defined architecture, called labeled RISC-V, and imple-
ment some control logics of PARD over it. We verify our work on
Xilinx VC709 evaluation board. With LvNA, we can simultaneously
boot unmodified OS in multiple VMs, without the help of soft-
ware hypervisors. Besides, we implement label-based token bucket
mechanism, to achieve precise control over memory bandwidth
allocation. Evaluation results show that, we can dynamically adjust
the allocation of memory bandwidth in a fine-grained manner. By
this mean, we can achieve the goal that improving memory band-
width utilization, while satisfying different QoS targets. Finally, the
resource overhead of our mechanism is about than 7.83%, while we
do not introduce any performance overhead.

In summary, we propose: (1) LvNA, a novel computer architec-
ture, which conveys software semantic information to hardware
by label, to equip hardware with the ability of identifying software
sources. (2) PARD, a case to control hardware at request level over
LvNA, to achieve guarantee of QoS and high utilization. (3) Labeled
RISC-V, a prototype proof of LvNA and PARD.

2 BACKGROUND
We first describe the problems of traditional architecture about
why it can not achieve guaranteeing QoS under sharing. Then we
describe the background of DiffServ as well as SDN to conclude
how they solve similar problem in the network area.

2.1 Unmanaged sharing: The Problem
In the traditional multi-core architecture, multiple applications can
run over it simultaneously. They share the hardware resources in-
cluding last-level cache(LLC), memory bandwidth, as well as I/O
bandwidth. This makes it possible to improve the resource utiliza-
tion with multi-core architecture. When an application can not

fully utilize the hardware resources, running another application
at the same time can make good use of the remaining resources.

However, when the resources are with heavy contention, it may
introduce performance interference. There are a lot of studies about
this "unmanaged sharing" phenomenon. When two cache-sensitive
applications run separately, they both run good. However, when
they run together on the same machine, they both suffer from
unpredictable performance degradation up to 3.3 times [41]. Some
researches over Google datacenters show that, this interference
exists over all shared resources, including hyper-threading, LLC,
DRAM, network [26]. To mitigate the interference, the mainstream
of current solutions adapted by industry utilize software technique
to schedule those applications with severe contentions to different
physical machines.

The root cause of unmanaged sharing is that, the low-level hard-
ware lacks of software semantic information. The hardware con-
trollers of shared resources can not tell which source a request
comes from. This results that the controllers can not determine
how critical a request is, which is important for the controllers to
guarantee QoS of critical applications. Therefore, we need a way to
convey the software semantic information down to hardware. Only
this mean can make it possible to mitigate resource contentions at
the hardware level.

2.2 DiffServ and SDN: The Inspiration
Historically, Internet confronted with similar dilemma in the 1990s
when a lot of network applications emerged, such as streaming
video, e-commerce, email and file transfers, which exhibited vary-
ing QoS requirements. To deliver end-to-end QoS on an IP-network,
the Internet Engineering Task Force (IETF) proposed Differentiated
Services (DiffServ) [37] in 1998. The key idea of DiffServ is defining
an 8-bit Differentiated Services field (DS field) in the IP header to
designate an application’s requirements so that routers can lever-
age the DS field to manage each packet for applications’ different
requirements.

The advent of software-defined networking (SDN) [6] further
facilitates network management and traffic engineering. There is
one prevalent interpretation of SDN’s key principles:

• Each network packet is attached with a label like flowid in
OpenFlow [4].

• The label contains application information.
• The label is propagated in the whole network.
• SDN devices will process packets differentiately according
to their lables.

The prevalence of DiffServ and SDN motivate us to investigate
whether it is feasible to apply SDN’s principles to computer archi-
tecture. We find a key observation that a computer is inherently
a network. As shown in Figure 1, a computer can be viewed as
an intra-computer network1; hardware components communicate
with each other via different types of packets, such as network-on-
chip (NoC), QuickPath Interconnect (QPI) [17] and PCIe packet;
apart from processing packets, the controllers of hardware com-
ponents actually play the role of network routers, i.e., forwarding

1The BarrelFish OS work [13] makes a similar observation that a computer is already
a distributed system.

Labeled RISC-V: A New Perspective on Software-Defined Architecture CARRV 2017, October 2017, Boston, MA, USA

 …

…

CPU Cores

M
e
m

o
ry

Last
Level
Cache

Disk

DRAM
Controller

I/O
Bridge

I/O
Interface

NIC

Other I/O
Devices

Devices
Controller

Neighbor

CPU

Interrupt

Figure 1: A traditional computer can be viewed as a network.

packets to a next hop. Therefore, it should be possible to apply
similar technique to computer architecture.

3 LVNA: A NOVEL ARCHITECTURE
To convey the software semantic information down to hardware,
we propose a novel computer architecture, Labeled von Neumann
Architecture(LvNA). LvNA is inspired by SDN. It has the following
four features.

Fine-grained Object. Every hardware requests will be attached
with a label. Specifically, we add a DiffServ ID (DS-id) label register
into all sources that generate requests, including each CPU core and
every I/O device. These registers are used for labeling cache-access,
memory-access, DMA.

Semantic-Gap. The labels are correlated with software seman-
tic information. Specifically, labels can be used to identify different
entities, including virtual machines, processes, threads, even more
find-grained entities such as functions and variables. For the sake
of simplicity, we first discuss virtual machine level labeling. That
is, requests with different labels mean they come from different
virtual machines.

Propagation. When a DS-id label is attached to a request at
source-end, the label will travel along with the request during its
whole lifetime until the request is completed. To achieve this, we
can benefit from bus. After adding serval bits on the bus to present
labels, the bus will transfer the labels automatically. However, we
should pay attention to LLC. Usually a write operation is divided
into multiple phases due to caching. For example, at the LLC level,
the first phase of a write request to DRAM only stores data in LLC
and marks the data block as dirty. For the second phase, the dirty
data block is selected to be evicted when a cache miss occurs, and
then written back to DRAM. During these latter phases, we need to
determine which label should be assigned to a writeback request.
To resolve this issue, We find that it is necessary to store DS-id if
there are multi-phase writeback requests, otherwise resulting in
inaccuracy. For example, assume that the current request is from
VM1 and attached with DS-id1, the cache block to be written back
belongs to VM2 with DS-id2. So the writeback request issued to
DRAM has to use the DS-id1. Consequently, the memory controller
may believe it is a request coming from VM1, which is not the case.
Therefore, for current LLC design, once a piece of requested data
is filled into LLC, its DS-id is stored into the tag array of LLC and
is marked as owner DS-id. When the data is to be written back to
DRAM, the owner DS-id will be assigned to the writeback request.

DiffServ. Hardware should provide mechanisms to process re-
quests with different labels by different policies. Since each request
contains a label, we introduce a programmable control logic into
every shared resource to make use of the label. Once receiving
a request, a control logic first serves the request according to its
DS-id and then generates a new request attached with the same
DS-id to next component.

4 PARD: A CASE OF LVNA
LvNA defines the features which an architecture should have to
convey the software semantic information down to hardware. But
LvNA does not define how the hardware should use this informa-
tion. Different label-based policies will lead to different usages of
LvNA. To mitigate the conflict between guarantee of QoS and high
utilization in datacenters, we propose Programmable Architecture
for Resourcing-on-Demand(PARD). PARD is a case of LvNA to im-
prove the controllability of datapath in the traditional architecture.
Other usages of LvNA, for example, security, will not be discussed
here.

4.1 overview
Figure 2 shows an overview of PARD based on LvNA. There are
various hardware components that behave differently and use DS-id
labels in different ways as well, e.g., LLC using DS-id for capacity al-
location or memory controller using DS-id for bandwidth allocation.
We devise a basic control logic structure for a variety of compo-
nents. Specifically, this structure consists of three DS-id indexed
tables, i.e., a parameter table storing resource allocation policies,
a statistics table storing resource usage information and a trigger
table storing performance triggers. Besides, the structure includes a
programming interface and an interrupt line. All control logics are
connected to a centralized platform resource manager. This control
logic structure can be easily instantiated and integrated into LLC,
memory and I/O controllers. More details will be described below.

4.2 Control Logic Design
To support differentiated services for different requests, PARD uses
parameter tables to store label-based rules in each control logics. For
example, in the cache control logic, we can add label-indexed way-
mask column in the parameter table. When requests with different
labels arrive, cache controller will use their labels to retrieve their
waymask information stored in the parameter table, then determine
which ways for each request can go to. In the memory controller,
parameter table can contain policies about address mapping and the
priorities of memory accessing. Requests with different labels will
also bemapped into different memory segments. Memory controller
can also schedule them according to their different priorities.

To know whether the critical application is interfered, PARD
uses statistic tables to monitor the usage of each shared resources.
In fact, statistic tables act as per-label performance counters. By
attaching labels with each requests, it is easy to count hardware
events separately, such as per-label cache hit/miss, per-label mem-
ory accessing.

To protect the critical application from future interference, PARD
introduces trigger-action mechanism. The trigger is a condition
referring statistics table, such as cache miss rate greater than 30%.

CARRV 2017, October 2017, Boston, MA, USA Zihao Yu, Bowen Huang, Jiuyue Ma, Ninghui Sun, Yungang Bao

On #3 {

}

On #2 {

}

On #1 {
 get current way mask & miss rate
 …...
 calculate new way mask
 update way mask to param table
}

Interconnect

...
High-Speed Interconnect

Trigger
Handlers

Control Logic
Network...

Cache

Core0

DS-idReg
Cache

Core1

DS-idReg
Cache

Coren

DS-idReg

Parameter Table
WayMaskBits

0xFF00
0x00FF

...

DS-id
default

2
...

Statistics Table
MissCnt

0
153
97
...

HitCnt
0

456
708
...

DS-id
1
2
3
...

Trigger Table
DS-id

2
...

Stats
MissRate

...

OP
>
...

Val
30%

...

DeviceN

Ctrl Logic

Device1

Ctrl Logic

Ctrl Logic

Bridge Shard CacheMem Ctrl
Ctrl Logic Ctrl Logic

Eth

CL Master

③ Platform Resource Manager

Embedded
ProcessorFlash

RAM BU
S

①

②

④

②

Figure 2: PARD Architecture Overview. The grey boxes represent PARD components.

The action runs in the firmware to adjust parameter table. For
example, we can adjust the way partition configuration when the
miss rate trigger condition is satisfied, allocating more ways to the
application with high priority. The trigger condition and action
signal are stored in trigger table.

Finally, each control logic contains three tables, a programming
interface and an interrupt line. These three tables are all accessible
though the programming interface. When a condition in the trigger
table is satisfied, an interrupt will be sent out with pre-defined
notify message.

4.3 Platform Resource Manager
To manage the programmable tables above in a unified manner,
PARD includes a per-computer centralized platform resource man-
ager(PRM). PRM acts similar as IPMI [3] in conventional servers. It
connects all control logics and label registers (see the dash lines in
Figure 2). PRM is essentially an embedded system-on-chip (SoC)
that consists of an embedded processor, RAM, flash, a local bus, an
Ethernet adaptor and the control logic master.

A Linux-based firmware running on PRM abstracts all control
logics as a device file tree that is logically centralized. The firmware
provides a uniform file based programming interface to access
different control logics, along with a more advanced trigger-action
programming methodology (see below) for operators to create and
deploy resource management policies.

4.4 Trigger-Action Programming Methodology
To facilitate operators to define resource management policies and
program control logics, we propose a trigger-action programming
methodology.

Operators can define several DS-id label-based trigger-action
rules, each of which targets a set of hardware resources. Particularly,
triggers are based on performance metrics such as LLC miss rate
and are stored in trigger tables; an action (a.k.a., trigger handler) can
be written in any languages as long as they support file primitives.
Operator-defined rules are installed in the device file tree of the
firmware. It is worth noting that thank to the centralized PRM,
trigger and action can be designated to different resources. For
instance, if a trigger is created to monitor memory bandwidth, its

action can be defined to adjust LLC capacity because LLC miss
rate is strongly correlated with both memory bandwidth and LLC
capacity.

Data center operators define actions and trigger-action rules to
represent different resource management policies that are corre-
lated to service-level agreements (SLA). Therefore, users can choose
suitable SLA according to their QoS requirements.

5 IMPLEMENTATION
We reconstructed RocketChip, an open-sourced RISC-V implemen-
tation, into a software-defined architecture, called Labeled RISC-V,
with the concept of LvNA. To verify PARD can mitigate the conflict
between guarantee QoS and high utilization. then we implement
some control logics of PARD over it. We perform the above evalua-
tion on a Xilinx VC709 FPGA development board.

For the sake of simplicity, we configure RocketChip into dual-
core. However, the state-of-the-art implementation of RocketChip
does not have an LLC. And due to some implementation issues, we
have not made the PCI-e devices fully work. Therefore, we can only
show some evaluation results on memory control logic to verify
the basic idea of LvNA as well as PARD.

We show how to reconstruct RocketChip into Labeled RISC-V
architecture. First, we add DS-id label registers after each core tiles.
Each request comes out of a core tail will be attached the label
stored in the corresponding label register. Then we associate the
labels with their virtual machines running on the core tiles. To
propagate labels in the whole uncore network, we add a new mem-
ber dsid to the bundle of TileLink2. As the TileLink2 masters, core
tiles will assign this new member with the value of label. Then the
TileLink2 implementation will help us to propagate labels automat-
ically. However, there are still peripherals outside the RocketChip.
To propagate labels to them, we do some small modifications to the
TileLink2/AXI4 Bridges. These modifications will support convert-
ing the dsid member in TileLink2 into the user signals of the AXI
protocol, and vise versa.

Currently we have only implemented the memory control logic
over Labeled RISC-V. The memory control logic supports memory
address mapping. The address mapping is implemented by a label-
indexed memory base column. When a request arrives, memory

Labeled RISC-V: A New Perspective on Software-Defined Architecture CARRV 2017, October 2017, Boston, MA, USA

control logic will retrieve the memory base by the label attached in
the request, and add this memory base to the address field of the
request. This function help to achieve fully hardware-supported
virtualization, which will be introduced in § 6.1.

We also implement label-based token bucket mechanism in the
memory control logic. We add three columns into the parameter
table. They represent the bucket size, token addition frequency and
token addition amount, respectively. The addition frequency is in
unit of cycles. Combining the addition frequency with addition
amount, we can represent any token rate in the token bucket mech-
anism. This makes it possible for memory control logic to allocate
dedicated memory bandwidth to any applications, with the help of
labels.

6 EVALUATION
6.1 Fully Hardware-Supported Virtualization
This experiment demonstrates the effectiveness of fully hardware-
supported virtualization enabled by LvNA. We partitioned the dual-
core RocketChip into two VMs that share hardware resources. We
launch the unmodified Linux in each VM, then we run some SPEC
CPU2006 workloads in each VM.

RISC-V currently does not have any hypervisor supports. How-
ever, with the help of LvNA, hardware is able to distinguish requests
from different VMs, and perform resource isolation over them. This
means that in LvNA, hardware can replace some basic function-
alities of software hypervisor to manage VMs. Specifically, in our
implementation, memory control logic is responsible for isolat-
ing memory regions which VMs access. By the address mapping
mentioned above, memory control logic is easy to map memory
accessing requests of different VMs into different physical memory
region.

6.2 Label-based token bucket
Based on the VM isolated by LvNA above, we run stream bench-
mark [7] in one VM. When stream runs alone, it consumes about
16.7 MB/s of memory bandwidth. However, it is difficult to generate
interference over memory bandwidth by only running applications
on RocketChip. This is because the frequency of CPU on FPGA is
only 100MHz, but the frequency of memory controller is 200MHz,
much higher than CPU frequency.

To address this issue, we add a memory traffic generator in
hardware to utilize memory bandwidth and introduce contention.
With the generator enabled, the memory bandwidth drops to about
9.1 MB/s. By setting the parameters of label-based token bucket to
restrict the access rate of the generator, the memory bandwidth of
stream can restore to about 16.3 MB/s. With token bucket enabled,
the total memory bandwidth is nearly fully utilized by co-locating
stream and the generator, while the actual performance of stream
is not hurt too much.

6.3 Overhead
Code complexity. To add the lable feature into RocketChip, we
only add 16 line of scala codes. Thanks to the abstraction of Chisel [1],
these 16 line of codes already implement the first three features of
LvNA, including fine-grained object, semantic-gap and propagation.

0

500

1000

1500

2000
Logic LUT LUTRAM FF

64 128
256

Statistics Parameter Trigger
Memory Controller

64 128
256

16 32 64

Statistics Parameter Trigger
Last Level Cache

64 128
256

64 128
256

16 32 64

Figure 3: FPGA Resource Usage of two control logics for
memory controller and last level cache. For reference, an
original memory controller and 768KB 12-way LLC (w/ tag
array only) consume 15178 and 75032 LUT/FF respectively.

To implement programmable control logics, we add another 800
line of scala codes.

Since our Labeled RISC-V implementation has not fully sup-
ported PARD features yet, for reference, here we show some over-
head data of our previous implementation of PARD over the Mi-
croBlaze platform.

Latency. We find that the LLC control logic does not introduce
extra latency. This is because the processing logic of the LLC control
logic can be hidden into the pipeline of the LLC controller. In fact,
pipelining is a typical design for modern CPUs’ LLC. Furthermore,
synthesis data verify that the logic of the LLC control logic is not
on the critical path.

For the memory control logic, cycle accurate simulation results
show that address mapping can be done by combination logic with-
out any cycle delay. On the other hand, synthesis results show that
this logic is not on the critical path, either. We can conclude that the
address mapping function does not introduce any actual delay. This
is also the case with our Labeled RISC-V implementation. For the
label-base token bucket, latency will be introduced for non-critical
applications. The actual latency dependents on the parameters of
token bucket configured in the parameter table. Therefore, it is not
easy to give a specific number.

FPGA Resources. The required FPGA resources of a control
logic mainly depend on the number of table entries of the three
tables.

Figure 3 shows synthesis data reported by Xilinx Vivado Design
Suite [8]. Specifically, the 256-entry parameter and statistics tables
of the memory control logic require 220 LUT for logic and 688
LUTRAM for storage. The 64-entry trigger table consumes more
logic resources (582 LUT + 387 FF) than storages (40 LUTRAM)
because it requires many comparators to implement triggers. Two
priority queues with 16-depth require only 324 LUT + 30 FF. The
total required FPGA resources (1189 LUT/FF) accounts for 7.83% of
the original Xilinx MIGv7 memory controller (15178 LUT/FF).

The LLC control logic exhibits similar resources consumption.
The 256-entry parameter and statistics tables and the 64-entry
trigger table require 2359 LUT/FF, introducing only 3.1% extra
FPGA resources compared with the original LLC controller (not
counting data array). Additionally, storingOwner_DS-id in tag array
adds 50% more of blockRAMs (from 12 to 18). This is because the

CARRV 2017, October 2017, Boston, MA, USA Zihao Yu, Bowen Huang, Jiuyue Ma, Ninghui Sun, Yungang Bao

original tag array stores 28 bits for each cache block and the DS-id
in our implementation is 8 bits. In fact, the tag array consumes very
little FPGA resources compared with the whole cache, thus these
extra six blockRAMs are negligible.

7 DISCUSSION
In this section, we will discuss some open problems brought by
LvNA [11]:

Theory: What is the impact of LvNA on RAM, PRAM, LogP
models? To elaborate, theoretically we can throttle all of the low
priorities requests to provide absolute QoS guarantee, however, this
will hurt utilization and overall throughput. Queuing and priorities
must be carefully considered to achieve balance between tasks.

Hardware/Arch: How to implement LvNA in CPU, memory,
storage, networking? The LvNA requires precise label control over
the flow of all of the requests inside the whole system, however,
industry designs pervasively use buffers, out-of-order processing
on CPU, cache memory hierarchy and a line of other subsystems.
It would be disastrous if all those requests are mis-labeled.

Programing Model and Compilers: How to express users’ re-
quirements and propagate to the hardware via labels? How to make
compilers support labels? Compilers have semantic information
that is hard to retrieve on hardware. Compilers can pass important
performance and usage pattern hints to hardware, which would be
highly valuable to guide hardware resources allocation.

OS/Hypervisor: How to correlate labels with VMs, containers,
processors, threads? How to abstract programming interfaces for
labels? OS/Hypervisor do task scheduling. A label mechanism that
permits the storage of related information of ready task as well as
fast label context switching between running tasks is necessary to
keep label info persistent during task scheduling cycles.

Distributed systems: How to correlate labels with distributed
resources? How to manage distributed systems with label mech-
anisms? A distributed task with hundreds or even thousands of
threads running on a line of servers surely poses many challenges
on how to propagate and manage labels.

Measurement/Audit: How to leverage labels to gauge and au-
dit resource usages? For example, the labels flow on systemmemory
can be discontinuous since system memory has to serve requests
from multiple sources. Besides that, labels’ origin also can be vague
on system memory, since “write to memory” requests from cache
is largely caused by cache evictions of dirty blocks, and the evic-
tion may be invoked by cache read miss requests with different
labels. Therefor one sometimes would be forced to gauge and audit
resource usage on such a difficult scenario.

8 RELATEDWORK
Hardware based techniques. Kasture and Sanchez propose Ubik
[22], a cache partitioning policy that characterizes and leverages
the transient behavior of latency-critical applications to maintain
their target tail latency. Vantage [39] implements fine-grained cache
partitioning using the statistical properties of Zcaches [38]. Utility-
based cache partitioning (UCP) [33] strictly partitions the shared
cache depending on the benefit of allocating different number of
ways to each application. Muralidhara et al. propose an application-
aware memory channel partitioning (MCP) [30] to reduce memory

system interference. However, these work usually focuses on only
one type of resource while PARD is able to simultaneously manage
all shared hardware resources within a server.

Similar to LvNA, NoHype [23] removes the virtualization layer
and makes use of hardware virtualization extensions to partition
a server into multiple submachines. However, this partitioning is
static. In contrast, LvNA allows operators to dynamically partition
a physical server into multiple VMs. Furthermore, PARD based on
LvNA supports trigger-action mechanism to deploy resourcing-on-
demand resource management policies.

Architectural support for QoS. Rafique et al. [34] propose a
OS-driven hardware cache partitioning mechanism that tags cache
requests and allows OS to adjust cache quota according to the
tag. Sharifi et al. [40] further propose a feedback-based control
architecture for end-to-end on-chip resourcemanagement. Iyer et al.
make substantial contributions in architectural support for QoS [16,
18, 19, 24, 25]. The closest work to PARD is class-of-service based
QoS architecture (CoQoS) [24, 25], which assigns a priority tag to
each on-chip request and allows cache/DRAM/NoC to schedule the
request according to the priority tag.

LvNA and PARD differ from these prior proposals in the follow-
ing aspects: (1) Prior work primarily focuses on on-chip resources
such as cache, NoC and memory bandwidth (managed by on-chip
memory controller) while LvNA is able to manage not only on-chip
resources but also I/O resources. (2) We design programmable con-
trol logics for PARD and a uniform programming interface while
prior work does not support programmability. (3) PARD includes a
centralized platform resource manager and a Linux-based firmware
to facilitate operators’ management. (4) LvNA supports not only
QoS but also NoHype-like virtualization that can partition one
server into multiple VMs. (5) PARD allows users to install trigger-
action rules while prior work lacks this useful mechanism.

9 CONCLUSION
This paper presents a study of building a software-defined architec-
ture. We first propose Labeled von Neumann Architecture(LvNA)
to equip the hardware with the ability of identifying requests from
different software. Then we propose programmable architecture
for resourcing-on-demand(PARD), leveraging such an ability to
improve the controllability of traditional hardware. We develop La-
beled RISC-V, an FPGA implementation with the concept of LvNA
and PARD. Our experiments demonstrated that PARD is able to
address the trade-offs between high utilization and high QoS in
datacenter environments.

We believe that LvNA is a promising architecture to enable hard-
warewithmore functionalities. PARDmakes a case for this direction
and provides new interfaces for users to interact with the hardware.
To encourage researchers to explore more on LvNA and PARD, we
release our Labeled RISC-V implementation at https://github.com/fsg-
ict/labeled-RISC-V

10 ACKNOWLEDGEMENT
This work was supported by the National Key R&D Program of
China under Grant No. 2016YFB1000201 and the National Natural
Science Foundation of China under Grant No. 61420106013.

Labeled RISC-V: A New Perspective on Software-Defined Architecture CARRV 2017, October 2017, Boston, MA, USA

REFERENCES
[1] [n. d.]. Chisel. https://github.com/freechipsproject/chisel3. ([n. d.]).
[2] [n. d.]. Gartner says efficient data center design can lead to 300 percent capacity

growth in 60 percent less space. http://www.gartner.com/newsroom/id/1472714.
([n. d.]).

[3] [n. d.]. Intelligent Platform Management Interface (IPMI). http://en.wikipedia.
org/wiki/Intelligent_Platform_Management_Interface. ([n. d.]).

[4] [n. d.]. OpenFlow Switch Specification. https://www.opennetworking.org/
sdn-resources/openflow/. ([n. d.]).

[5] [n. d.]. RocketChip. https://github.com/freechipsproject/rocket-chip. ([n. d.]).
[6] [n. d.]. Software-Defined Networking. https://www.opennetworking.org/

sdn-resources/sdn-definition/. ([n. d.]).
[7] [n. d.]. STREAM: Sustainable Memory Bandwidth in High Performance Comput-

ers. http://www.cs.virginia.edu/stream/. ([n. d.]).
[8] [n. d.]. Vivado Design Suite. http://www.xilinx.com/products/design-tools/

vivado/. ([n. d.]).
[9] [n. d.]. Why Dropbox dropped Amazon’s cloud. http://www.networkworld.com/

article/3045570/cloud-computing/why-dropbox-dropped-amazons-cloud.html.
([n. d.]).

[10] 2012. Computing Community Consortium (CCC). 21st Century Computer
Architecture. A community white paper (2012). http://cra.org/ccc/docs/init/
21stcenturyarchitecturewhitepaper.pdf

[11] Yun-Gang Bao and Sa Wang. 2017. Labeled von Neumann Architecture for
Software-Defined Cloud. Journal of Computer Science and Technology 32, 2 (01
Mar 2017), 219–223. https://doi.org/10.1007/s11390-017-1716-0

[12] Luiz Andre Barroso, Jimmy Clidaras, and Urs Holzle. 2013. The Datacenter
as a Computer: An Introduction to the Design of Warehouse-Scale Machines.
Synthesis Lectures on Computer Architecture 8, 3 (2013), 1–154.

[13] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles
(SOSP ’09). New York, NY, USA, 29–44.

[14] Jeffrey Dean and Luiz Andre Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (Feb. 2013), 74–80.

[15] L. Albert Greenberg. 2015. SDN for the Cloud. Technical Report. SIGCOMM
Keynote.

[16] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and
Jaideep Moses. 2009. Rate-based QoS techniques for cache/memory in CMP
platforms. In Proceedings of the 23rd international conference on Supercomputing.
479–488.

[17] Intel. 2009. An Introduction to the IntelÂő QuickPath Interconnect.
[18] Ravi Iyer. 2004. CQoS: a framework for enabling QoS in shared caches of CMP

platforms. In Proceedings of the 18th annual international conference on Supercom-
puting. 257–266.

[19] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan
Solihin, Lisa Hsu, and Steve Reinhardt. 2007. QoS Policies and Architecture for
Cache/Memory in CMP Platforms. In Proceedings of the 2007 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’07). New York, NY, USA, 25–36.

[20] James M Kaplan, William Forrest, and Noah Kindler. 2008. Revolutionizing Data
Center Energy Efficiency. Technical report, McKinsey & Company (2008).

[21] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. 2012. Chronos: Predictable Low Latency for Data Center Applications.
In Proceedings of the Third ACM Symposium on Cloud Computing (SoCC ’12). New
York, NY, USA, Article 9, 14 pages.

[22] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache Sharing with
Strict Qos for Latency-critical Workloads. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’14). New York, NY, USA, 729–742.

[23] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. 2010. NoHype:
Virtualized Cloud Infrastructure Without the Virtualization. In Proceedings of the
37th Annual International Symposium on Computer Architecture (ISCA ’10). New
York, NY, USA, 350–361.

[24] Bin Li, Li Shiuan Peh, Li Zhao, and Ravi Iyer. 2012. Dynamic QoSManagement for
ChipMultiprocessors. ACMTrans. Archit. Code Optim. 9, 3 (Oct. 2012), 17:1–17:29.

[25] Bin Li, Li Zhao, Ravi Iyer, Li Shiuan Peh, Michael Leddige, Michael Espig, Se-
ung Eun Lee, and Donald Newell. 2011. CoQoS: Coordinating QoS-aware shared
resources in NoC-based SoCs. J. Parallel and Distrib. Comput. 71, 5 (2011),
700–713.

[26] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 450–462. https://doi.org/10.1145/2749469.
2749475

[27] Jiuyue Ma, Xiufeng Sui, Ninghui Sun, Yupeng Li, Zihao Yu, Bowen Huang, Tianni
Xu, Zhicheng Yao, Yun Chen, Haibin Wang, Lixin Zhang, and Yungang Bao. 2015.

Supporting Differentiated Services in Computers via Programmable Architecture
for Resourcing-on-Demand (PARD). In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’15). ACM, New York, NY, USA, 131–143. https://doi.org/10.
1145/2694344.2694382

[28] Jason Mars, Lingjia Tang, and Mary Lou Soffa. 2011. Directly Characterizing
Cross Core Interference Through Contention Synthesis. In Proceedings of the 6th
International Conference on High Performance and Embedded Architectures and
Compilers (HiPEAC ’11). New York, NY, USA, 167–176.

[29] Jason Mars, Neil Vachharajani, Robert Hundt, and Mary Lou Soffa. 2010. Con-
tention Aware Execution: Online Contention Detection and Response. In Proceed-
ings of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization (CGO ’10). New York, NY, USA, 257–265.

[30] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kan-
demir, and ThomasMoscibroda. 2011. Reducingmemory interference inmulticore
systems via application-aware memory channel partitioning. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture. 374–385.

[31] Onur Mutlu and Thomas Moscibroda. 2007. Stall-time fair memory access sched-
uling for chip multiprocessors. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture. 146–160.

[32] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at
Facebook. In Proceedings of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). Lombard, IL, 385–398.

[33] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture. 423–432.

[34] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. 2006. Architectural
Support for Operating System-driven CMP Cache Management. In Proceedings
of the 15th International Conference on Parallel Architectures and Compilation
Techniques (PACT ’06). New York, NY, USA, 2–12.

[35] Lenin Ravindranath, Jitendra Padhye, Ratul Mahajan, and Hari Balakrishnan.
2013. Timecard: Controlling User-perceived Delays in Server-based Mobile
Applications. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 85–100. https://doi.org/
10.1145/2517349.2522717

[36] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, RandyH. Katz, andMichael A.
Kozuch. 2012. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis. In Proceedings of the Third ACM Symposium on Cloud Computing (SoCC
’12). New York, NY, USA, Article 7, 13 pages.

[37] RFC2475. [n. d.]. An Architecture for Differentiated Services. http://tools.ietf.
org/html/rfc2475. ([n. d.]).

[38] Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling Ways
and Associativity. In Proceedings of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’43). Washington, DC, USA, 187–198.

[39] Daniel Sanchez and Christos Kozyrakis. 2011. Vantage: scalable and efficient
fine-grain cache partitioning. In ACM SIGARCH Computer Architecture News,
Vol. 39. 57–68.

[40] Akbar Sharifi, Shekhar Srikantaiah, Asit K. Mishra, Mahmut Kandemir, and
Chita R. Das. 2011. METE: meeting end-to-end QoS in multicores through
system-wide resource management. In Proceedings of the ACM SIGMETRICS
joint international conference on Measurement and modeling of computer systems.
13–24.

[41] Christine Wang. 2014. Intel Xeon Processor E5-2600 v3 Product Family Perfor-
mance & Platform Solutions. (2014).

https://github.com/freechipsproject/chisel3
http://www.gartner.com/newsroom/id/1472714
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
http://en.wikipedia.org/wiki/Intelligent_Platform_Management_Interface
https://www.opennetworking.org/sdn-resources/openflow/
https://www.opennetworking.org/sdn-resources/openflow/
https://github.com/freechipsproject/rocket-chip
https://www.opennetworking.org/sdn-resources/sdn-definition/
https://www.opennetworking.org/sdn-resources/sdn-definition/
http://www.cs.virginia.edu/stream/
http://www.xilinx.com/products/design-tools/vivado/
http://www.xilinx.com/products/design-tools/vivado/
http://www.networkworld.com/article/3045570/cloud-computing/why-dropbox-dropped-amazons-cloud.html
http://www.networkworld.com/article/3045570/cloud-computing/why-dropbox-dropped-amazons-cloud.html
http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf
http://cra.org/ccc/docs/init/21stcenturyarchitecturewhitepaper.pdf
https://doi.org/10.1007/s11390-017-1716-0
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2694344.2694382
https://doi.org/10.1145/2694344.2694382
https://doi.org/10.1145/2517349.2522717
https://doi.org/10.1145/2517349.2522717
http://tools.ietf.org/html/rfc2475
http://tools.ietf.org/html/rfc2475

	Abstract
	1 Introduction
	2 Background
	2.1 Unmanaged sharing: The Problem
	2.2 DiffServ and SDN: The Inspiration

	3 LvNA: A novel architecture
	4 PARD: A case of LvNA
	4.1 overview
	4.2 Control Logic Design
	4.3 Platform Resource Manager
	4.4 Trigger-Action Programming Methodology

	5 Implementation
	6 Evaluation
	6.1 Fully Hardware-Supported Virtualization
	6.2 Label-based token bucket
	6.3 Overhead

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgement
	References

