Building Hardware Components for Memory Protection of
Applications on a Tiny Processor

Hyunyoung Oh, Yongje Lee, Junmo Park, Myonghoon Yang and Yunheung Paek
Seoul National University
{hyoh,yjlee,jmpark,mhyang}@sor.snu.ac.kr,ypaek@snu.ac.kr

ABSTRACT

As we move towards the IoT era, it is clear that many tiny proces-
sors will surround us, constantly communicating and transferring
valuable information with others. Although it is obvious that such
processors will become appealing targets to attackers, they often
lack sophisticated hardware memory protection mechanism, such
as virtual memory. To enhance memory protection of tiny proces-
sors, several studies have tried to design new hardware protection
mechanisms at low cost. Those mechanisms, however, demand in-
vasive modifications to the CPU internal architecture, and these
modifications require significant cost and time for CPU redesign
and verification. In this paper, we present the design of hardware
components for realizing an isolation of critical information on a
tiny processor. Unlike other previous work, in our approach, several
hardware components are integrated together to build a system
with enhanced memory protection. To check the feasibility of our
idea, we implement an early prototype where a RISC-V processor
is connected with the proposed hardware components. Empirical
results show that ours achieves the goal with virtually no perfor-
mance and low area overhead.

1 INTRODUCTION

As we move to the Internet of Things (IoT) era, more and more ex-
tremely small embedded devices like implanted medical devices are
expected to use tiny embedded processors. Moreover, these devices
mostly would likely be connected to the IoT network and carry
sensitive user information like user profiles or credentials, and ac-
cordingly they are becoming attractive targets for cybercriminals.
Therefore, for the proliferation of small devices in the IoT era, it
seems clear that we must properly address the security challenge
that is to protect security-critical information on these devices from
various attacks. To enforce the protection of the critical informa-
tion, a conventional method is to implement a memory protection
mechanism that can isolate trusted applications processing critical
information from other untrusted ones.

To efficiently support memory protection, the hardware typi-
cally provides a special module for memory management, called the
memory management unit (MMU). A main task of MMU is perform-
ing virtual-to-physical mappings to realize virtual memory so that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CARRV’17, Oct 2017, Boston, MA USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the OS can exercise access control over every page in its memory
system by specifying security properties for memory protection
(i.e., memory access permissions and memory region attributes)
in memory-mapped tables known as translation tables [2]. From
the perspective of security, a key benefit of virtualizing address
space is that it empowers the OS to protect sensitive data from
unauthorized code by selectively binding the data with the code in
the virtual address space. That is, in the virtual memory system, if
any application wants to access data at runtime, its code and the
data must be mapped (or bound) to the same virtual address space.
Therefore, in order to authorize only a trusted application to access
sensitive data, the OS simply configures translation tables in a way
to map the physical address of the data onto the virtual address
space of the authorized application code.

Despite its powerful security capability through code-data bind-
ing, virtual memory is rarely adopted by tiny embedded processors
today in the market [3], but instead, deployed mostly in more capa-
ble processors targeting desktop PCs or other computing devices
with ample resources. One major reason is that maintaining virtual
memory inherently requires a considerable amount of computation
which is more than what a resource-stringent tiny processor could
afford. To satisfy the resource constraints, many vendors of such
low-end processors have implemented in hardware memory protec-
tion mechanisms without virtualization. For this, these processors
usually have a hardware memory management module, called the
memory protection unit (MPU), that assists the OS to enforce basic
access rules for memory protection on the device without virtual
memory support. MPU assumes that the system has a single physi-
cal memory space regardless of the number of processes running on
the device. The memory space is divided into a number of regions,
and each process is assigned a set of regions associated with specific
access permissions given by the OS. At runtime, MPU enforces the
access rules by constantly checking if every process makes data
accesses complying with their permissions.

Being free from the virtualization overhead, MPU can control
data accesses of a process on memory regions with more efficiency.
To maximize the efficiency, the access control mechanism of MPU
in existing tiny processors has been simplified in a way that each
region in the main memory is given the identical access permission
for every process trying to access it. However, from the perspective
of security, such efficiency exposes the system to a potential security
breach that even when sensitive data must be processed by a trusted
application, the region containing the data can be accessed not only
by the trusted code but also by others (possibly from adversaries).
For this reason, when users want to set different access permissions
individually for each process, the OS should set different MPU
configurations whenever the context switch occurs. However, this
OS-dependent approach is reportedly no longer secure because

https://doi.org/10.1145/nnnnnnn.nnnnnnn

many recent cases have reported that even an OS kernel can be
compromised by the high-level attack such as rootkits. In those
cases, the memory isolation based on MPU is no longer guaranteed.

To overcome the limitation of the OS-dependent memory protec-
tion, recent studies [4, 7] endeavor to extend the protection features
by providing a hardware-enforced isolation of software modules
targeting tiny embedded processors. In SMART [4], they presented
a new processor architecture which includes an attestation Read-
Only Memory (ROM) and a special storage in which the sensitive
data are stored. Also, its MCU access control logic is changed to en-
sure that only the specified code in the attestation ROM can access
the sensitive data in the special storage. In [7], they tried to en-
hance the protection mechanism of the original MPU architecture
by augmenting hardware logic to link code regions to data regions,
thus making the permission check execution-aware. Although they
have successfully enhanced the security of tiny processors, all these
previous solutions cannot be applied directly to the devices with
existing processors because they require intrusive modifications
to the internal architecture of an existing processor including the
pipeline registers and datapaths.

A line of research [6, 8] has focused on implemental issues such
as how security hardware logics can be implemented with keep-
ing the underlying CPU intact. Both studies commonly have used
the hardware debugging interface of the processor to extract the
branch target addresses for the control flow integrity enforcement.
By verifying branch target addresses at runtime, they have success-
fully detected the illegal control flow with incurring virtually no
overhead on the host CPU. Motivated by their work, in this paper,
we present the design of hardware components which enable the
enhanced memory protection features for a tiny embedded proces-
sor. Our solution is basically exerting the strategy similar to that of
earlier work [7]. However, while their approach requires a perma-
nent design change of the host processor, our study conforms to the
modular design approach, that several hardware components can be
assembled together to offer the enhanced memory protection. As
our first hardware component, we design the memory region protec-
tor (MRP) whose main role is to enable a tiny processor to have the
code-data binding ability that has been provided by MMU with vir-
tual memory. MRP is able to isolate code regions individually from
each other according to their permissions, and thereby to bind data
regions to a specific code region based on the pre-defined access
rules between code and data regions. In order to define individual
access rules between code and data regions, MRP maintains the
register files for storing the low- and high addresses of code and
data regions which are configured at the boot time. Also, We build
the configurable access permission matrix which defines the access
permission of a code region for each data region. With the access
permission matrix, MRP determines the legitimacy of each data
transfer by checking the defined access permission between the
instruction address generated at the CPU's instruction fetch stage
and the data transfer address generated at the execution stage. How-
ever, as our MRP is located outside the processor, those necessary
addresses issued by the internal pipeline are not directly visible to
our MRP. Thus, we must somehow devise a special mechanism to
extract the processor internal information outwardly in a timely
manner. For this purpose, we also build a generic security interface
inside the processor to extract the control flow and the data access

patterns of the host. To check the feasibility of our idea, we make a
prototype where the slightly modified RISC-V Rocket is integrated
with other hardware components.

The rest of the paper is organized as follows. Section 2 describes
our assumption and the threat model. After Section 3 shows the
overall system architecture for the memory protection, Section 4
explains the detailed implementation of our hardware modules.
Then, Section 5 discusses the experimental setup and results. In
Section 6, we cover the previous studies related to ours.

2 ASSUMPTION AND THREAT MODEL

In this work, we target embedded systems employing tiny pro-
cessors available in today's market, which cannot afford MMUs
for sophisticated virtual memory managements. We assume that
the target system comes in the form of an SoC and therefore any
external hardware can be attached during implementation.

As for our adversaries, we assume that untrusted software mod-
ules can be installed in the target devices. These untrusted modules
can lead to compromising an entire program when (1) the modules
have vulnerabilities which can be exploited by an attacker or (2) the
modules themselves are malicious. This is due to the fact that, with-
out address protection between modules, a software module would
be able to corrupt the data used by another module. Additionally, we
assume that the adversary has full control over the communication
interface with the target system and can deliberately manipulate or
eavesdrop on the messages sent over the interface. We also assume
that the target system is exposed to physical attacks such as on-chip
bus probing or reverse engineering but these are out of the scope
of this paper.

3 OVERALL SYSTEM ARCHITECTURE
3.1 SoC Prototype Overview

As clearly stated in Section 1, the ultimate goal of our research is
to develop the hardware components which can be used to build
a SoC with an external memory protection capability. To this end,
we first present the SoC prototype including our proposed hard-
ware components. Figure 1 shows the overall architecture of our
SoC platform. In the prototype, the host CPU is the RISC-V Rocket
CPU in which the security interface is installed. The host CPU and
our MRP module are connected via the system bus, which is the
standard AMBA3 AXI interconnect [10]. MRP supports the security
function that is to establish the software isolation environment by
observing the host internal information (i.e., currently executing
instruction address or memory access patterns of programs run-
ning on the host). In order to obtain the information, MRP has an
additional connection to the security interface embedded in the
host. Also, MRP has a connection to the access permission matrix
that contains access permissions of a code region for each data
region. By referring the access permission matrix, MRP determines
if there is an illegal memory access. The main memory is a storage
which keeps the code and data necessary for the host's operations.
The host CPU and the main memory are connected through the
system bus in a way that the main memory can be accessed by the
host. Our MRP hardware is also attached to the system bus so that
the host can configure our MRP at will. In Section 4, more details
of the hardware modules will be explained.

RISC-V CPU
Security Mem_ory Accfesg
——> Region L Permission

Interface -

Protector Matrix
< AMBA Interconnect (Master/Slave) >
.
Memory Main
Controller Memory

Figure 1: The overall architecture of our prototype

3.2 Memory Protection Process

Figure 2 illustrates the exemplary case for our SoC prototype with
the high-level software and hardware architecture. Inside the SoC
boundary, the RISC-V CPU is integrated with a programmable read-
only memory (PROM). PROM stores the boot loader code to define
the code and data region and initialize the access permission ma-
trix and for each task during boot. Since the tiny devices that our
security solution for the memory protection targets include limited
tasks, PROM stores the code in advance. Once the code and data re-
gion are defined and the access permission matrix is initialized, they
are controlled so that they can not be modified. The host CPU is
also connected with the main memory and peripheral IPs such as a
timer or high-speed communication interfaces. Our MRP monitors
all memory accesses issued by the CPU based on the information
fed by the security interface. These memory accesses include gen-
eral memory access as well as access to memory-mapped IO devices
(here, they are peripherals in Figure 2).

In the example given in Figure 2, each task has its own address
space to access. During the software execution, our MRP checks
whether or not any task running on the host CPU tries to access
the wrong address space. During the boot-up sequence, the host
CPU first access the boot loader code stored in PROM. Then, the
boot loader programs our MRP to define the accessible code and
data regions for each task.

Task A Task B

)
=
w
2
@)
-/
Software
layer

RISC-V ‘—’(Main Memory |

CPU ‘_,(

Figure 2: Memory protection process using our prototype

MRP

Hardware
layer

Peripherals l

4 IMPLEMENTATION DETAILS
4.1 Memory Region Protector

Figure 3 shows the overall architecture of our MRP hardware. The
MRP hardware is divided into four submodule. The code region
selector (CRS) and data region selector (DRS) respectively finds the

code region which the data transfer instruction belongs to and the
data region which the instruction's data address lands. Another
submodule is the decision unit that makes the final decision about
the occurrence of illegal memory accesses when a data transfer
occurs. To make the decision if there are illegal memory accesses,
MRP refers to the access permission matrix. And the other is the MRP
controller. During the boot-up sequence, through the AHB slave
interface in the MRP controller the code stored in PROM configures
the registers in CRS and DRS to define protected code and data
regions, respectively and the registers in the access permission
matrix to assign the allowed permissions. To define the address
range of each code or data region, two registers are provided to set
the low and high addresses of the region.

MRP needs the program execution information inside the proces-
sor to perform the aforementioned functions. The essential infor-
mation is categorized into three groups: (1) the instruction address
of currently executing code (PC) and (2) the data address and (3)
the data transfer type of each data transfer instruction. MRP takes
as input the information through the security interface. The infor-
mation for groups (1), (2) and (3) is fed respectively by the security
interface via the following pins:

(1) data_transfer_inst_addr
(2) data_transfer_data_addr
(3) data_transfer_type

In addition, the flag indicating the execution of data transfers is
sent over signal line, data_transfer_en.

The data_transfer_data_addr and data_transfer_inst_ad
dr are the data and instruction addresses of the data transfer instruc-
tion, respectively. The instruction address of transmitted data means
the address of the currently executing code. The data_transfer_type
indicates whether the data transfer instruction is stored or loaded.
(i.e., either memory write or read). The data_transfer_en indi-
cates a signal to enable the preceding signals. When a data transfer
instruction is executed by the processor, the data_transfer_en
signal is set on. At the same cycle, data_transfer_inst_addr,
data_transfer_type and data_transfer_data_addr become va-
lid. Then, the instruction and data address are respectively sent to
CRS and DRS by the MRP controller. To find out which code region
the executed data transfer instruction belongs to, CRS searches
through its registers (CodeRegion@-7). Then, the code region num-
ber is output via code_region_num. Similarly, using the data ad-
dress from the MRP controller, DRS looks up the matched code
region in its registers (DataRegion@-7) and sends the region num-
ber outwards through data_region_num. When the incoming data
address belongs to one of defined code region, the region number
is conveyed via the code_region_num_t signal. Then, the selected
region numbers are sent to the access permission matrix. Finally,
the access permission matrix searches the allowed permission cor-
responding to the region, and sends back the permission to the
decision unit to decide whether or not the executed data transfer is
legitimate. When the currently executed data transfer instruction
is found to violate the received access rule, the decision unit sets
the illegal_access signal on.

Up to now, we have explained how a code region for a trusted
software module can be defined by the set of memory regions and

Access Permission Matrix

load or stqre

Memory Region Protector

Code Region Selector
CodeRegion0 (1/h),
CodeRegionl (I/h)
CodeRegion2 (I/h)
CodeRegion3 (1/h),
CodeRegiond (I/h)
CodeRegion5 (I/h),
CodeRegion6 (I/h)
CodeRegion7 (I/h)

Cochmrics‘

Data Region Selector

DataRegion(
DataRegionl

[dode regign

num Decision Unit

data_regidn
num

DataRegion2 4
DataRegion3

DataRegiond
DataRegion5
DataRegion6

DataRegion7 4

set code regions inst_addr)
daa_addr| MRP Controller data_addr
signals from s——| AHB Slave Interface | set data regions

security interface i

< AHB Interconnect >

Figure 3: Memory Region Protector architecture

fde_region_
num_t

L

illegal access

G T G O

load or store

associated access permissions. In addition to this, we have to con-
sider the case when the trusted software module is invoked by
another software regardless of whether the latter is trusted one
or not. The most important thing for a safe communication to the
trusted software is to enforce that the trusted software is only in-
voked at a known address. For example, under code reuse attacks [9],
the attackers might want to reuse the code snippets at an arbitrary
address in the trusted software to access security-critical data. To
provide the users with an interface to safely call trusted code, MRP
has an optional registers called CodeEntries which contain the
instruction addresses of the overall code regions set by MRP that
can be executed by other software modules. When an untrusted
software tries to invoke one of the trusted software modules, MRP
checks if the value in PC after change of the control flow(i.e., target
address of branch instruction) can be found in CodeEntries.

4.2 Access Permission Matrix

The access permission matrix has the access permission for code
and data regions, and the number of each region is eight. The access
permission matrix is depicted in Figure 4. The access permission
matrix maintains two types of relationship: code vs. code region and
code vs. data regions. There are three types of access permissions:
Readable, Writable, Executable. For each code and data region, The
data in the access permission matrix is represented by three bits to
cover the every case of permission allocation.

During the boot-up, the code stored in PROM initializes the ac-
cess permission matrix. When the code stored in PROM is executed,
the processor launches a command. Over the AHB interconnect, the
command is encoded in accordance with the bus protocol. On re-
ceiving the command, the AHB slave interface in the MRP controller
module decodes the command and sends the decoded information
to the access permission matrix to update its registers.

OBJECT Code Code Code Data Data Data
SUBJEC Region0 Regionl Region2 Region0 Regionl Region2
Code
Region0 RX e R RW = RW
Code
Regionl E 2) B &
o . R RX RW R RW
Region2

«
A R : Readable, W : Writable, X : eXecutable

Access Permissions ———— . :
- : No access is permitted

Figure 4: Access Permission Matrix

The access permission matrix reads and sends the permission
after the receiving the code/data region number from MRP. The
procedure is as follows. First, let AP(Ci, Dj) be the access permission
between code region i and data region j. Similarly, AP(Ci, Cj) means
the access rule between code region i and j. On receiving the code
region number and data region number, the access permission
matrix reads the permission AP(Ci, Dj). When the code region i
and j are valid, the access permission matrix reads the permission
AP(Ci, Cj). Then the access permission matrix sends the allowed
permission to the decision unit.

4.3 Security Interface

The security interface is interacting with the RISC-V processor so
that the interface can transfer the processor's internal informa-
tion to MRP such as instruction address or data access patterns.
To extract these pieces of information, we analyzed the pipeline
architecture and internal components such as stage control regis-
ters or the program counter at each stage. The RISC-V processor
has a six-stage pipeline composed of pcgen, fetch, decode, execute,
memory and write back. Among these pipeline stages, the main
part we are paying attention to is between the execute and memory
stages where instruction/data addresses are calculated and stored
for extracting the signals we need. However, there may often be
a case that the sequence conducted by the core is executed differ-
ently from the input instruction sequence due to the execution
optimization or interrupt. In this sense, to recognize the context of
the instruction being executed, we designed the interface to observe
control registers with the signals regarding the execution status.
Consequently, our security interface have to determine which infor-
mation is accessed to the memory by keeping track of the signals
generated by the core.

For this purpose, the security interface is composed of three
parts: enable flag generation, classification and instruction/data
address extraction. First, an enable flag generation is a part which
confirms that the data transfer actually takes place and triggers
the data transfer to MRP. If it turns out that data transfer to the
data array inside the data cache occurred, the security interface is
ready to export instruction/data address to MRP. Second, since MRP
creates each area table depending on the load or store operation,
there should be a classification part that can send the signals to
MRP after distinguishing what an operation is taking place in the
core. Lastly, based on memory access type perceived by the classi-
fication part, the instruction/data address extraction part obtains
the corresponding instruction/data address transferred from the

Core

EX Stage * MEM Stage: WBStage | Security Interface
EX_pc ={MEM_pcl-= WB_pc
. E E S
Recasannnane Bae [XRECREO
EXctrl| = E
reg E ;- >
- L data_addr
A N A PRSI ’
N e e MUX
2 2 a Y
Y.V VY :
zz
o J| it
A A)
....... data_en
........... D— >
\ A 2 /

Load Tagged Store
Address

Data Array
Data Cache

Existing wire
Additional wire ------=-=-=---

Figure 5: Information extraction through Security Interface

core and sends them to an output port. These parts are shown in
Figure 5.

First of all, to recognize if the memory access operation occurs,
the security interface checks the ready/valid signal between the data
array and the arbiter that controls the input signals of the data array.
At this time, since each ready/valid signal exist in the store/load
operation, the state when the ready/valid signal corresponding to
each operation are both high can be used as an enable flag. From
the enable flag, the security interface gets ready to transfer the
signals to MRP. Additionally, when the ready/valid signal become
both high for the load or store operation, the accessed address
is also passed from the arbiter to the data array. However, this
address is a short address based on the data address sent from the
core. Therefore, the simplified address sends to the output port
after being re-extended to the data address received from the core
through the address extender.

A classification part is used to classify whether the currently
executed instruction is the load or store operation. Since MRP
creates different tables depending on the load or store operation,
it is necessary to recognize that this instruction has what type of
memory access. To determine the memory access type, the security
interface refers to control registers that contain information about
the instruction being executed and controls the operation of the
execute stage. In summary so far, if the enable flag occurs by the
ready/valid signal inside the data cache and the interface obtains
the corresponding data address, the operation which makes the
enable flag high is determined which memory access type has.

Lastly, the most important factor is, when the enable flag oc-
curs, which instruction address should be fetched from the pro-
gram counter at which stage. To accomplish this work, the instruc-
tion/data address extraction part are used to export appropriate
addresses depending on the input instruction sequence. In gen-
eral, it is executed in the core in the same order as the instruction

entered. However, we observe some cases which the processing
order may be different from the order of the input instructions de-
pending on the execution status. In this case, we allow the security
interface to align elements within a data set by using control regis-
ters from an execute stage. In other words, the security interface
comprehensively determines the current situation and selects the
corresponding instruction/data address executing the load or store
operation through the multiplexers. Finally, the selected address
will be passed to the output port of the security interface.

5 EXPERIMENTAL RESULTS
5.1 Hardware Area Overhead

To evaluate the area overhead of our approach, we have imple-
mented the SoC prototype including the hardware components as
described in Section 3. In our prototype, we use the Xilinx Zyngq-
7000 board and use a version 1.7 of RISC-V Rocket core parame-
terized by FPGA configuration DefaultFPGASmallConfig, as the
host processor. In our implemented MRP, the number of code and
data region are both configured to be eight. The bus compliant with
AMBA AHB2 protocol [1] is used to interconnect all the modules in
our prototype system. As the OS kernel, Linux zynq 3.15.0 is used.

Based on the parameters for the prototype as described above,
we synthesized our overall SoC Design onto the prototyping board
with a Xilinx XC7Z020CLG484-1 FPGA and 64MB external SDRAM.
Table 1 provides the design statistics of our hardware prototype. We
quantified the resources necessary for our hardware components in
terms of lookup tables for logic (LUTs) and FFs. The design statistics
show that, compared to the baseline Rocket core, our components
incur the resource overhead of 12.81% and 21.48% for FFs and LUTs,
respectively. We also estimated the gate count of our hardware
components using Synopsys Design Compiler. With a commercial
45nm process library, the total gate-count of the proposed modules
is 16,586(1,712 gates for the security interface, 12,828 gates for MRP
and 2,046 gates for the access permission matrix).

Category Components LUTs FFs
Baseline o cket Core 9229 6894
System

Security Interface 80 195

Our Memory Region Predictor 1066 1082

Hardware |Access Permission Matrix 36 204

Components | Total 1182 1481
% over Baseline System 12.81% 21.48%

Table 1: Synthesis result of our hardware components

5.2 Performance Overhead

The security interface incurs zero performance overhead because it
extracts the internal information without changing the critical path
of the host CPU. Using the interface, our MRP runs in parallel with
the functional execution of the host. Hence, the access permission
check of MRP also does not impact the performance of the target
system. To initialize the protected code/data regions and the access
permissions in MRP, the overhead of setting registers is additionally

imposed. For each code or data region, three register writes are
required: two for the high- and low-address of the region and one for
the access permission. However, considering that tiny processors
mainly target small devices where most of their applications are
already fixed and thus can be statically allocated, this register-
setting overhead has little impact on the whole system performance.

5.3 Security Considerations

Firstly, the main goal of our MRP is to establish the isolation envi-
ronment for the critical code and data. For this purpose, our MRP
refers to the access control matrix which ensures that a data region
storing security-critical data is only accessed by an authorized ap-
plication. In addition, the MRP prevents untrusted software from
indiscriminately accessing (or invoking) the tasks in code regions
by restricting its access to predefined code entries in MRP registers.

As another application, our MRP would be helpful in establishing
the root of trust for remote attestation. Remote attestation is the
process of securely verifying the state of a remote hardware plat-
form to ensure that the known trusted software is correctly running
on the platform [4]. To ensure this code integrity, the usual strategy
of attestation is to compute a hash value of the trust code periodi-
cally by reading the code itself and comparing the hash value to a
golden value which is pre-computed when the trusted software is
initially installed. To support this scenario, our MRP is also capable
of providing a code region with an exclusive access permission to
read another code region to be attested and of providing the secret
key necessary for computing the hash value.

6 RELATED WORK

As memory protection (e.g., process isolation) is considered to be a
fundamental primitive of most security enhanced systems, much re-
search effort has been devoted to developing, in hardware, efficient
isolation mechanism available to various platforms. For high-end
devices (e.g., desktop PCs or even smartphones), the problems of
dealing with software isolation are relatively well-understood and
a considerable amount of knowledge has been obtained from re-
searches conducted for the past decades. In fact, most existing
high-end processors deploy an MMU hardware to protect the sys-
tem by preventing one process from interfering with the critical
code or data of another process. On the other hand, only a few
research studies have been interested in developing enhanced mem-
ory protection features for low-end resource-impoverished devices.

In SMART [4], one of the hardware solutions to enhance memory
protection for low-end devices, they proposed a technique to estab-
lish a root of trust for performing remote attestation. In their work,
a special storage in the memory space is added to the processor
architecture to store the secret key which is necessary to perform
hash functions for attestation. They also implemented a custom
access logic which ensures that only the code residing in a specified
region in ROM can access the key in the special storage. This way,
the secret key is only accessible by the verifier code in ROM, and
users can get the assurance that the hash value is computed by the
authorized verifier code using the correct secret key. TrustLite [7] is
another noticeable hardware-assisted technique aiming to enhance
the memory protection of tiny processors with MPU. Basically,
TrustLite extended the memory access control model proposed by

SMART. Instead of implementing a special storage for the secret
key and the access control logic, TrustLite realized a programmable
access control logic, called the execution-aware memory protection
unit (EA-MPU), to link code regions to data regions. The EA-MPU
hardware has an access rule table which maintains the access per-
missions from code regions to data regions. To find out which code
is currently running on the host, they modified the pipeline logic of
a processor to extract the instruction pointer (IP) which points to the
address of the executed instructions. Also the read/write addresses
of data transfer instructions are also extracted to monitor the data
access pattern. The EA-MPU logic checks the IP and data transfer
addresses against the access rule table to decide the existence of
invalid memory accesses. These hardware studies for the memory
protection problem empirically suggest that capitalizing on hard-
ware techniques should be an excellent way to overcome the lack
of sophisticated memory protection features of low-end devices (or
processors). Unlike our approach, however, their techniques have
made permanent changes to the internal architecture of the existing
processor to improve memory protection. In our work, we present
anew design approach to building a security system with enhanced
memory protection by integrating several hardware components.

As a hardware component that plays a role similar to the MRP
designed in this paper, there are MPU [3] of ARM Cortex series
processors and PMP [5] which can be optionally enabled in RISC-
V processors recently. For MPU and PMP, the size of a protected
region can be configured as a power-of-two multiple of 4KB. Com-
pared to these components, MRP has the advantage that the upper-
and lower-bounds of a region can be configured to any address.
Consequently, MRP provides more flexibility in setting up the pro-
tected regions. Moreover, it is meaningful that the security interface
provides the system developers with the capability of installing
various security hardware components which operate based on the
CPU internal information.

7 CONCLUSION

We present in this paper a hardware-based memory protection solu-
tion to enhance the memory protection features of a tiny embedded
processor. To achieve this goal, we propose several hardware com-
ponents. The core component of the our hardware is MRP that
plays the role of deciding the existence of invalid memory accesses
by observing the source and destination addresses of data transfers
inside the host. To this end, MRP refers to the access permission
matrix that provides the access permission for each code and data
region. Moreover, to establish a communication channel between
the our hardware components and the host processor, we design the
generic security interface by modifying the internal architecture of
the RISC-V processor. Being connected to the RISC-V CPU via the
security interface, MRP can receive the CPU internal information
at runtime. The experimental results showed that our hardware
based solution successfully isolated code regions individually from
each other and provides enhanced memory protection with low
area and virtually no performance overhead.

REFERENCES

[1] ARM 1999. AMBA Specification. ARM.
[2] ARM 2007. ARM Architecture Reference Manual (ARMv7-A and ARMv7-R edition.
ARM.

(3]

[10]

ARM 2014. ARM Cortex-M7 Processor. ARM.

Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust.. In NDSS, Vol. 12. 1-15.

Electrical Engineering and Computer Sciences University of California 2016.
The RISC-V Instruction Set Manual Volume II: Privileged Architecture. Electrical
Engineering and Computer Sciences University of California.

Zonglin Guo, Ram Bhakta, and Tan G Harris. 2014. Control-flow checking for
intrusion detection via a real-time debug interface. In Smart Computing Workshops
(SMARTCOMP Workshops), 2014 International Conference on. IEEE, 87-92.
Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: a security architecture for tiny embedded devices. In Proceedings
of the Ninth European Conference on Computer Systems. ACM, 10.

Yongje Lee, Jinyong Lee, Ingoo Heo, Dongil Hwang, and Yunheung Paek. 2017.
Using CoreSight PTM to Integrate CRA Monitoring IPs in an ARM-Based SoC.
ACM Trans. Des. Autom. Electron. Syst. 22, 3, Article 52 (April 2017), 25 pages.
https://doi.org/10.1145/3035965

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM conference
on Computer and communications security. ACM, 552-561.

Xilinx 2011. AXI Reference Guide. Xilinx.

https://doi.org/10.1145/3035965

	Abstract
	1 Introduction
	2 ASSUMPTION AND THREAT MODEL
	3 OVERALL SYSTEM ARCHITECTURE
	3.1 SoC Prototype Overview
	3.2 Memory Protection Process

	4 IMPLEMENTATION DETAILS
	4.1 Memory Region Protector
	4.2 Access Permission Matrix
	4.3 Security Interface

	5 EXPERIMENTAL RESULTS
	5.1 Hardware Area Overhead
	5.2 Performance Overhead
	5.3 Security Considerations

	6 RELATED WORK
	7 CONCLUSION
	References

