
TAIGA: A CONFIGURABLE RISC-V SOFT-PROCESSOR FRAMEWORK FOR HETEROGENEOUS
COMPUTING SYSTEMS RESEARCH

Eric Matthews and Lesley Shannon

School of Engineering Science
Simon Fraser University

Burnaby, British Columbia
ematthew@sfu.ca, lshannon@ensc.sfu.ca

ABSTRACT
Heterogeneous computing architectures that combine high-

performance multicore processors with custom hardware accelerators
offer the potential to increase compute efficiency. In this paper, we
discuss our goal of creating an open-source, configurable, multicore
framework for heterogeneous computing systems research on Field
Programmable Gate Arrays (FPGAs) using the RISC-V ISA and
the types of research questions we believe it can be used to investi-
gate. As the basis of this desired framework, we describe Taiga, our
RISC-V 32-bit IMA (Integer, Mult/Div, Atomic) ISA soft processor.
Its design has been specifically targeted at Intel and Xilinx FPGA
fabrics to reduce resource usage and improve operating frequency to
facilitate heterogeneous computing systems research. The processor
design is both modular and extensible so as to facilitate the inclusion
of new functional units (i.e. custom instructions) and for the eventual
extension of the core to the full RISC-V ISA. It also includes neces-
sary hardware infrastructure to support an O/S as well as replication
for multicore architectures.

Index Terms— configurable, extensible, soft-processor, RTL,
variable-length pipeline, parallel execution-units, heterogeneous com-
puting systems research, FPGAs

1. INTRODUCTION
Heterogeneous compute systems combine multiple processing ele-
ments with different Instruction Set Architectures (ISAs) (e.g. x86,
GPGPUs, etc.) and/or custom hardware (HW) accelerators with the
goal of providing better compute efficiency. The subset of hetero-
geneous systems that combine one or more processors with custom
HW accelerators that are implemented on Field Programmable Gate
Arrays (FPGAs) are of increasing interest with Intel’s purchase of
the second largest FPGA vendor and the fact that FPGAs are now
commonly found in data centres.

This is a very active area, as we try to answer the question: How
do we incorporate reconfigurable fabric and custom HW accelerators
into the computing hierarchy? Even if we assume an infinite reconfig-
urable fabric able to implement all the custom HW accelerators for all
of the applications executing on heterogeneous platforms at any given
time, there are many interesting research questions to consider. For
example, should we integrate HW accelerators as custom instructions
into a CPU’s datapath? Or, should they be more loosely integrated as
their own independent compute units with extremely limited ISAs?
While a mixture of these two options might make the most sense-
depending on the complexity of the HW accelerator, how would we
identify and support these varied levels of integration dynamically
for unknown workloads at runtime?

For platforms running unknown multi-application workloads, there
are challenges in selecting appropriate accelerators, and sharing them
where possible. Simply recognizing that reconfigurable fabric is a
fixed resource of a fixed size that must be shared between acceler-
ators, and possibly applications, adds additional dimensions. From
architecture to resource management (sharing and scheduling) to
virtualization and security (guaranteed execution isolation of HW
”threads” on reconfigurable fabrics), these types of heterogeneous
computing systems offer many interesting and exciting research ques-
tions for the future.

In this paper, we discuss our goal of creating an FPGA-based,
open-source1, configurable, multicore framework for heterogeneous
computing systems research using the RISC-V ISA and the types of
research questions we believe it can be used to investigate. As the
basis of our desired framework, we describe Taiga [1], our modular,
extensible, RISC-V 32-bit IMA (Integer, Mult/Div, Atomic) ISA soft
processor and how future work will extend it to create a multicore
framework for heterogeneous computing systems research. Taiga’s
design has been specifically targeted at Intel and Xilinx FPGA fabrics
to reduce resource usage and improve operating frequency to facilitate
heterogeneous computing systems research. Unlike other RISC-V
soft processors aimed at FPGAs, Taiga is designed to:

• support variable-latency execution of functional units,
• enable parallel execution of functional units (to increase In-

struction Level Parallelism),
• ease integration of custom functional units into the CPU data-

path,
• allow replication of functional units (traditional or custom),

and
• support scratchpad and cache-based memory coherence mod-

els, and
• in the future, enable high performance processor functionality

(out-of-order commits, etc.).
Taiga has been designed for the eventual extension of the core to
the full RISC-V ISA and to enable its extension to the 64-bit ISA
if desired. Its configurations also include hardware infrastructure
necessary to support an O/S as well as replication for multicore
architectures.

Although multiple other RISC-V processors currently exist [2–4],
those that are specifically targetted at FPGA platforms [3, 4] are not
aimed at systems level research and are not readily extensible to sup-
porting an O/S or Symmetric/Asymmetric Multicore Configurations.
The novelty of Taiga is that: 1) it is specifically designed as a CPU
core for Symmetric and Asymmetric multicore configurations with an

1https://gitlab.com/sfu-rcl/Taiga

1



O/S, and 2) its unique soft processor datapath architecture comprises
parallel-execution, variable-latency functional units increases ILP,
making it a better suited soft processor architecture for research into
the inclusion of new custom instructions into its datapath.

The remainder of this paper is organized as follows. Section 2
summarizes the works related to this paper, including relevant FPGA-
mappable RISC-V architectures and existing soft-processor-based
multicore architectures. Section 3 provides an overview of Taiga’s
architecture and Section 4 discusses how we envision it being ex-
tended to a multicore design and how it can be used in heterogeneous
computing systems research. Finally, Section 5 concludes the paper,
summarizing our plans for future work.

2. RELATED WORKS
Heterogeneous computing systems research is a very active area. In
this section, we provide an overview of some of the frameworks and
infrastructure that can be used to enable this research- particularly for
those that wish to map their designs to FPGA fabrics. We summarize
existing work on RISC-V architectures that can be mapped to FPGA
platforms, highlighting why Taiga is more appropriate for heteroge-
neous systems based research on FPGAs. We also mention some
of the other platforms for computing simulation and discuss why
we are excited about the opportunities presented by an open-source,
FPGA-based platform for heterogeneous computing systems research.
Finally, we outline the existing soft-processor-based multicore plat-
forms for FPGAs.

ORCA [3] and GRVI [4] both focus on optimizing the resource us-
age of their RISC-V processor implementations for FPGA-based plat-
forms. However, neither include the key hardware support required
for running an O/S, such as a memory management unit (MMU),
translation lookaside buffers (TLB) and caches. Both architectures
also rely on a fixed-pipeline architecture that limits the amount of
ILP that can be extracted for non-vectorized software and they do not
have a generic interface for incorporating custom HW accelerators
as custom instructions. Taiga’s parallel-execution, variable-latency
functional units are designed to increase ILP for the datapath and
readily support tight integration of custom instructions.

When complex out-of-order ASIC designs [5, 6] have been ported
onto FPGAs, they did not map well to FPGA fabrics, which resulted
in extremely large designs with low operating frequencies. The RISC-
V Rocket processor [2] is currently the best soft-processor-based
RISC-V implementation for systems research. It provides interfaces
for custom hardware accelerators, supports multicore configurations
and includes features for O/S support and other features common
to modern CPUs (e.g. branch predictors and caches). However, the
architecture is not aimed at FPGA-based platforms, meaning that key
architectural features (e.g. the branch predictor) do not map well to
the FPGA fabric or leverage the embedded cores in the fabric (e.g.
the DSP units and LUT-RAMs) to reduce resource usage and increase
operating frequency. As we discuss in Section 3, this results in a
significantly larger and slower configuration when mapping onto an
FPGA. Taiga [1] provides an additional opportunity for architectural
researchers for heterogeneous systems as it supports an extensible
modular interface for memory subsystems supporting both caches
and scratchpad memory for instruction and data sources.

Software simulators (e.g. Simics [7], SimpleScalar [8], GEMS [9],
GEM5 [10]) have provided common platforms for computing systems
architectural researchers to investigate potential new architectural fea-
tures. In fact, work has been done to extend software simulators to

support reconfigurable fabrics as part of their simulation [11]. Our
proposed framework is meant as a complementary alternative to these
platforms: software simulation can provide the user with unlimited
visibility to software execution but at speeds that are orders of mag-
nitude slower than running the same system configurations using
our proposed FPGA-based computing systems framework. While a
soft-processor based platform does not provide the same visibility
as traditional software simulators, it is possible to instrument FPGA-
based computing platforms to provide detailed trace data that can
provide researchers the types of insights required to understand key
runtime interactions (e.g. memory accesses) [12].

There are multiple soft-processors with ISAs other than the RISC-
V that are vendor agnostic [13–15], however, there only are only
three multicore soft-processor architectures that are designed to boot
a Linux kernel: 1) the RISC-V Rocket processor [2], the LEON3 [15],
and the PolyBlaze [16]. However, neither the LEON3 nor Rocket
processors are aimed at FPGA fabrics, making them both larger and
slower than FPGA-targeted designs. Conversely, the PolyBlaze is
designed for FPGA fabrics as it is based on Xilinx’s MicroBlaze [17]
CPU architecture. But it is also not not open source, as the MicroB-
laze is proprietary. Furthermore, the Rocket processor, PolyBlaze
and LEON3 all have fixed-pipelines, which are not well suited to
tightly integrating custom instructions. We believe that the Taiga soft-
processor targets a design space with specific opportunities. Its unique
parallel-execution, variable latency functional unit design provides ex-
citing architecture research opportunities. Furthermore, by targeting
the design to FPGA fabric, it is able to significantly reduce resource
usage while increasing operating frequency so that researchers will be
able to instantiate large multicore configurations on an actual device
and still have considerable room for HW accelerators. This increases
the type and range of custom HW accelerators that can be investigated
along with the levels of integration (i.e. tightly, loosely, or mixed).

3. OVERVIEW OF THE TAIGA PROCESSOR
Figure 1 presents a overview of the Taiga processor [1] and pipeline
details. As each unit in Taiga has different latencies and throughputs,
each execution unit has its latency (top number) and iteration interval-
the rate at which a unit can start additional requests (bottom number)-
included. For example, the multiplier unit has a latency of 2 cycles
(top number) for an operation and is fully pipelined and able to start
a new request every cycle (i.e. bottom number of ’1’). Conversely,
the divider is not pipelined. Its latency is dependent on whether there
is an early exit corner case (e.g. overflow, divide by zero, the result
of a previous div/rem operation). Otherwise, it takes an additional 32
cycles (for a total of 34) to complete.

As clearly shown in Figure 1, all the functional units have indepen-
dent execution paths. As such, even though the processor has a scalar
(single-issue) architecture, it is possible for multiple instructions to
be in flight in the execution phase at any given time. This not only
increases the ILP of the underlying architecture, but facilitates the
addition of new functional units (e.g. an FPU or a custom instruction).
By creating a generic, scalable interface to the decode/issue phase of
the processor, it is easier to extend its architecture for new functional
units. Section 4 will discuss how this architecture can be leveraged
for heterogeneous computing systems research.

Taiga supports the 32-bit base integer instruction set with the Mul-
tiply/Divide and atomic operations extensions (RV32IMA) [1]. It
is described using SystemVerilog and designed to be FPGA vendor



TLB MMU

BRAM

Inst
  Cache

TLB MMU

BRAM Data
 Cache

Bus
    Master

L1 A
rbiter

System
 Bus

Load Store Unit

Fetch Block

Decode / Issue

LS

Fetch

3/4+
Br
1

1
ALU

1

1
CSR

2

2
Mul

2

1 1+

2/34

2/34
Div

Regs

   Inuse
Bit

Register File

  Inuse
ID

ID Gen

Inst Q

Reg File

WB

Instruction Tracking

Branch
  Pred M

em
 Interface

Processor Pipeline

Fig. 1. Taiga Pipeline Structure and Overview. Latency and throughput information is provided for each of the execution units excluding the effect of input/output FIFOs.
The number above each unit is the cycle latency for that given unit. The number below the unit is the rate, in cycles, that the unit can start additional requests. Multiple listings of
numbers indicates that the latency can very. A variable latency is indicated with a number followed by a plus symbol.

Table 1. Full System (Processor, Bus with UART, memory interface)
LEON3 and Taiga Configurations versus Rocket Processor (plus
memory interface) Resource Usage Comparison

LUTs FFs Slices BRAMs DSPs Freq(MHz)

LEON3 6,704 3,640 2,042 12 4 75

Rocket 17,144 9,058 5,536 10 0 54

Taiga 3,998 2,942 1,371 10 4 104

agnostic where possible and leverage specific features where appro-
priate, supporting both Intel and Xilinx FPGAs. Along with selecting
which vendor the processor is being mapped to, its configuration
parameters allow the inclusion/exclusion of an: integer divider, in-
teger multiplier, instruction cache, data cache, scratchpad (data and
instruction), memory management unit, translation lookaside buffer,
and branch predictor. The size and address range of the scratchpad is
configurable as is the number and types of functional units supported
and the type of bus. Both the data and instruction cache allow the
user to select the number of lines, ways, and the number of words in a
line. The data and instruction TLBs allow users to select the number
of ways and depth. Finally, the user can select the number of entries
in the branch predictor table.

Taiga’s modular design allows users to easily extend or alter sub-
component functionality. For example, while both caches use a
random replacement policy, the replacement policy subcomponent
could easily be replaced with an alternate policy (e.g. Least Recently
Used, clock, etc.). Similarly, the branch predictor simply uses a “pre-
vious branch” policy (i.e. predicting a jump to the same destination
as the previous branch), which can also easily be replace by the user.
In both cases, these polices have been chosen to optimize for resource
usage and operating frequency as opposed to Instructions Per Cycle
(IPC).

Table 1 summarizes the resource usage and operating frequency
of the Taiga soft processor system along with a LEON3 and Rocket
RISC-V processor in single core configurations [1]. The LEON3 and
Rocket processors have been selected for this comparison as they
are the only two open-source, soft-processors scalable to multicore
configurations that are designed to boot an operating system. For this
comparison, the configurations of all three processors have been set to
be as close as possible. All three designs are mapped to a Xilinx Zynq

Z7CZ020 FPGA on a zedboard for the resource and operating fre-
quency comparisons. All three processors are configured with: 1) no
scratchpad memories, 2) 8KB, 2-way instruction and data caches with
random replacement policies, 3) MMU support, 4) integer multiply
and divide support only (no Floating point units), 5) default branch
predictors and 6) no local memory. The resource usage numbers for
both the LEON3 and Taiga processor also include a system bus and
a UART, whereas the Rocket resource usage numbers are only for
the processor core and its memory interface. The final configuration
difference is that we are using the 64-bit Rocket processor, whereas
both the LEON3 and Taiga are configured as 32-bit processors. This
difference is due to the fact that at the time of this submission, the
32-bit Rocket full system configuration (processor plus memory inter-
face) could not be generated for compilation by the Vivado synthesis
tools.

As can be seen from the results reported in Table 1, the Taiga
processor uses considerably fewer resources and has a significantly
higher operating frequency than both the LEON3 and Rocket RISC-
V processors. Although the LEON3 features a different ISA than
the Taiga processor, when configured as a 32-bit processor, it uses
1.5x more slices than the Taiga processor while operating at a 28%
slower operating frequency. When combined with the limited range
of multicore configurations (a maximum of four cores), we believe
that this is more limiting for heterogeneous systems researchers. The
Rocket RISC-V processor allows users to select any non-zero number
of cores. Our future multicore versions of Taiga are planned to support
up any non-zero configuration up to at least 8 cores (possibly more).
Minimally, we allow at least 8 cores as previous work suggests that it
may be possible to scale our system up to 8 cores without impacting
its operating frequency [16]

Obviously, the Rocket RISC-V is expected to be larger than the
Taiga processor due to its 64-bit ISA. However, simply having a
wider data does not result in the more than 4x increase in resources.
Instead, some of the additional area is due to more complex processor
features (e.g. compressed instruction set) whereas other increases in
resource usage are due to the poor mapping of specific architectural
features (e.g. the branch predictor) to the fabric. Finally, the Rocket
RISC-V does not utilize any of the FPGA’s embedded DSP slices for
arithmetic operations. This results in an additional increase in size
and critical path delay for arithmetic operations.



Table 2. Taiga configuration comparisons. All Cache configurations assume a random replacement policy.
Configuration Details LUTs FFs BRAMs DSPs Freq(MHz)

Minimal: 4KB scratchpad; Excludes: Div, Mult, caches, MMU, TLB, and branch predictor 1,551 971 1 0 123

Div and Mult: Div, Mult, and 4KB scratchpad; Exclude: caches, MMU, TLB, branch predictor and scratchpad 2,018 1,121 1 4 119

Scratchpad: Div, Mult, branch predictor, and 16KB scratchpad; Excludes: caches, MMU, and TLB) 2,159 1,193 5 4 115

Baseline Config (from Table 1): Div, Mult, 2-way 8KB D$ and I$, MMU, TLB, branch predictor, and no scratchpad 2,851 1,512 7 4 110

Everything: Div, Mult, 2-way 8KB D$ and I$, MMU, TLB, branch predictor, and 4KB scratchpad 2,937 1,514 8 4 104

Table 2 illustrates how the Taiga processor scales in resource usage
for different configurations that might be desired by the user. For all
configurations, the Taiga processor operating frequency is at least 104
MHz (as listed in Table 1). Taiga’s minimal configuration configura-
tion requires a scratchpad as the processor requires either a scratchpad
or cache to act as a local memory interface with the system memory.
The 4KB scratchpad requires a single BRAM and no DSP slices are
needed without the divider and multiplier functional units. The Div
and Mult configuration adds the divider and multiplier functional
units to the minimal configurations. It increases the LUT utilization
by 30% and requires an additional 4 DSP blocks to implement the
new arithmetic units.

The scratchpad configuration increases the size of the scratchpad
to 16KB and adds the branch predictor. This nominally increases
the LUTs required (7%). This configuration requires 5 BRAMs, 4
for the 16KB scratchpad and 1 for the branch predictor table. The
baseline configuration is the same as the one described in Table 1. The
scratchpad has been removed and replaced with 2-way 8KB Data and
Instruction caches, along with the addition of the MMUs and TLBs
as well. This significantly increases the LUT (32%) and flipflop
(27%) usage to support these additional units. The configuration
also requires 7 BRAMs. Each cache requires two BRAMs, one for
each way to allow parallel access of the ways, and one for the tag
bank, for a total of 3 BRAMs per cache. The 7th cache is used by
the branch predictor. The final configuration includes “everything”;
it includes everything in the baseline configuration and adds in a
4KB scratchpad. This minimally increases the LUT usage (3%) and
adds an additional BRAM for the scratchpad memory relative to the
baseline configuration.

.

4. THE FUTURE: AN OPEN-SOURCE, MULTICORE
FPGA-BASED PLATFORM FOR HETEROGENEOUS

COMPUTING SYSTEMS RESEARCH
In this section, we first describe how the Taiga processor will be
scaled to a multicore configuration. We then discuss how such an
architectural framework can be used for heterogeneous multicore
systems research.

As stated previously, we believe that our proposed processor frame-
work is complimentary to the Rocket system. Taiga is currently de-
signed to support the privileged instruction set (1.10), with current
support for the 32-bit IMA (Integer, Mul/div, Atomic), and config-
urable FPU support in the near future to support the full “default”
RISC-V configuration. With the privileged instruction set support
Taiga will be capable of supporting Linux. As it is specifically tar-
geted at Intel and Xilinx FPGA fabrics, it offers considerable resource
usage and performance benefits for those that wish to actually map
their designs to FPGAs - particularly for multicore configurations-
as part of their research investigations. Based on our experience
with the PolyBlaze system [16], we plan to scale the Taiga to the
multicore architectural framework shown in Figure 2. Each Taiga

L2 Arbiter

Memory Controller

AXI Bus

UARTInterrupt
Controller

I$ D$
L1 Arbiter

CPU

MMU I$ D$
L1 Arbiter

CPU

MMU

L2 Cache

Fig. 2. Envisioned multicore RISC-V configuration

core will have its own instruction and data caches as well as a MMU.
An interface, called the L1 arbiter, will act as a bridge to connect the
CPU core to the L2 arbiter. The L2 arbiter acts provides a generic
interface for each CPU core to the rest of the memory system. It
ensures system-level coherency amongst the cores. Both the L1 and
L2 arbiter designs are based on our previous PolyBlaze system de-
signs [16]. Depending on the user’s preference, the L2 arbiter can
then be used to either connect the multicore system to a system-level
L2 Cache (as shown in Figure 2) or directly to the main memory
system. For Intel and Xilinx FPGAs, we expect that the user would
likely map the L2 cache to the fabric’s on-chip memory (BRAMs).
However, the main memory system is expected to be stored off-chip
in DDR (or flash). This will provide sufficient memory for a Linux
kernel as well as the benchmark applications and their data sets.

Although the system will be designed assuming a symmetric mul-
tiprocessor (SMP) configuration, the proposed CPU and system-level
architecture offer users the ability to investigate both tightly integrated
HW accelerators (as “custom instructions”) or loosely integrated HW
accelerators that would act as independent compute units, or some
mix of the two. In the case of custom instructions, researchers would
be able to update the RISC-V GCC compiler flow to recognize the
new operations and directly compile to the Taiga processor. Architec-
turally, the generic functional unit interface, shown from the Decode
phase in Figure 1, allows researchers to easily include any number of
any type of functional unit they wish. When combined with the RISC-
V GCC support, this provides an automated flow for researchers to
evaluate software application mappings to RISC-V processors with
tightly integrated accelerators. This will allow researchers to focus
more on how to leverage these custom instruction configurations in
heterogeneous systems, where each processor has one or more differ-
ent HW accelerators tightly integrated into its pipeline. This leads to
interesting research questions, such as, how to map unknown work-
loads onto these multicore systems that comprise one or more threads
that may wish to share these custom instructions (even between ap-
plications). Alternately, as the processor supports both caches and
scratchpads, researchers can investigate how data is marshalled for
custom instructions- should they simply fetch from the data cache or
is a scratchpad more appropriate.

The proposed system-level architecture can also be used to loosely
integrate HW accelerators into a heterogeneous compute architecture.
In this case, the L2 arbiter, shown in Figure 2 provides a generic



interface for new compute units. A CPU core can be replaced by a
custom HW accelerator with its own equivalent of the L1 Arbiter.
Researchers can then investigate how the HW accelerator should
marshall its data, using either a scratchpad or cache, while ensuring
system-level coherency. If a cache is to be used, what type(s) of
replacement policies would function well. Software questions such
as scheduling threads to use HW accelerators as compute units and
sharing these compute units between applications also become in-
teresting. In short, these custom HW accelerators become services
at the system-level that should be both scheduleable by the O/S and
shareable between applications in an unknown workload at runtime.

Finally, these two styles of integration, tightly integrated custom
HW instructions and loosely integrated custom HW compute units,
need not be mutually exclusive. They are building blocks that allow
computer architecture researchers a rich design space to explore
for heterogeneous systems. Taiga’s proposed scaling to a multicore
system will provide researchers with all the necessary infrastructure to
support both the hardware and software design space for this research.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we discussed the Taiga soft-processor core and future
plans to scale it to a multicore processor that will support both sym-
metric and asymmetric configurations. We described why we believe
that this new soft RISC-V processor will help to fill an important re-
search infrastructure need as it is extended to a multicore architecture.
Specifically, its unique soft-processor pipeline architecture supporting
parallel execution of variable latency functional units is well suited
to investigating tightly integrated custom instructions into proces-
sor architectures. Furthermore, it supports caches and scratchpads,
allowing researchers to investigate alternate memory mechanisms
for storing local data for custom instructions. It is designed to be
both modular and extensible so that researchers can add new func-
tional units (e.g. an FPU) and even new high performance features
(e.g. out-of-order commits). Finally, the processor core has been
specifically designed for FPGA fabrics to provide reduced resource
usage and higher operating frequencies. This should ensure that it
will scale well to larger multicore configurations while leaving ample
reconfigurable fabric for custom instructions and loosely integrated
custom hardware accelerators.

Our immediate future work will be to bring up a Linux kernel
on the single core configuration and add floating point unit support
to provide support for the full “default” RISC-V configuration. We
will then scale the the Taiga core to an open-source multicore archi-
tecture supporting symmetric and asymmetric configurations, with
individual processors allowing unique cache and custom instruction
configurations for heterogeneous systems research. This infrastruc-
ture will allow us and others to investigate key research questions for
programming, virtualization, resource management and architecture
of heterogeneous computing systems.

6. REFERENCES
[1] E. Matthews and L.Shannon, “Taiga: A new risc-v soft-processor

framework enabling high performance cpu architectural features,” in To
appear in FPL, 2017.

[2] K. Asanovi et al., “The rocket chip generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
Apr 2016.

[3] “ORCA: RISC-V by VectorBlox.” [Online]. Available:
github.com/VectorBlox/orca

[4] J. Gray, “Grvi phalanx: A massively parallel risc-v fpga accelerator
accelerator,” in FCCM, May 2016, pp. 17–20.

[5] G. Schelle et al., “Intel nehalem processor core made fpga
synthesizable,” in The ACM/SIGDA Int’l Symp. on FPGAs, 2010, pp.
3–12.

[6] F. J. Mesa-Martinez et al., “Scoore santa cruz out-of-order risc engine,
fpga design issues,” in (WARP), held in conjunction with ISCA-33,
2006, pp. 61–70.

[7] P. S. Magnusson et al., “Simics: A full system simulation platform,”
Computer, vol. 35, no. 2, pp. 50–58, 2002.

[8] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[9] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (gems) toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
2005.

[10] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[11] P. Garcia and K. Compton, “A reconfigurable hardware interface for a
modern computing system,” in Field-Programmable Custom Computing
Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on.
IEEE, 2007, pp. 73–84.

[12] N. C. Doyle, E. Matthews, G. Holland, A. Fedorova, and L. Shannon,
“Performance impacts and limitations of hardware memory access trace
collection,” in 2017 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017, pp. 506–511.

[13] U. of Cambridge, “The tiger mips processor,” University of Cambridge,
Tech. Rep., 2010. [Online]. Available:
www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html

[14] “Arm cortex-m1 processor,” ARM Ltd. [Online]. Available:
arm.com/products/processors/cortex-m/cortex-m1.php

[15] GRLIB IP Core User’s Manual. [Online]. Available:
www.gaisler.com/products/grlib/grip.pdf

[16] E. Matthews, L. Shannon, and A. Fedorova, “Polyblaze: From one to
many bringing the microblaze into the multicore era with linux smp
support,” in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on. IEEE, 2012, pp. 224–230.

[17] MicroBlaze Processor Reference Guide, Xilinx Inc. [Online]. Available:
xilinx.com/support/documentation/sw manuals/xilinx2016 4/
ug984-vivado-microblaze-ref.pdf

github.com/VectorBlox/orca
www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html
arm.com/products/processors/cortex-m/cortex-m1.php
www.gaisler.com/products/grlib/grip.pdf
xilinx.com/support/documentation /sw_manuals/xilinx2016_4/ug984-vivado-microblaze-ref.pdf
xilinx.com/support/documentation /sw_manuals/xilinx2016_4/ug984-vivado-microblaze-ref.pdf

	1  Introduction
	2  Related Works
	3  Overview of the Taiga Processor
	4  The Future: An open-source, multicore FPGA-based platform for heterogeneous computing systems research
	5  Conclusions and Future Work
	6  References

