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ABSTRACT
Managed languages such as Java, JavaScript or Python account for
a large portion of workloads, both in cloud data centers and on
mobile devices. It is therefore unsurprising that there is an inter-
est in hardware-software co-design for these languages. However,
existing research infrastructure is often unsuitable for this kind of
research: managed languages are sensitive to fine-grained inter-
actions that are not captured by high-level architectural models,
yet are also too long-running and irregular to be simulated using
cycle-accurate software simulators.

Open-source hardware based on the RISC-V ISA provides an
opportunity to solve this problem, by running managed workloads
on RISC-V systems in FPGA-based full-system simulation. This
approach achieves both the accuracy and simulation speeds re-
quired for managed workloads, while enabling modification and
design-space exploration for the underlying hardware.

A crucial requirement for this hardware-software research is a
managed runtime that can be easily modified. The Jikes Research
Virtual Machine (JikesRVM) is a Java Virtual Machine that was
developed specifically for this purpose, and has become the gold
standard in managed-language research. In this paper, we describe
our experience of porting JikesRVM to the RISC-V infrastructure.
We discuss why this combined setup is necessary, and how it en-
ables hardware-software research for managed languages that was
infeasible with previous infrastructure.

1 INTRODUCTION
Managed languages such as Java, JavaScript and Python account
for a large portion of workloads [16]. A substantial body of work
suggests that managed-language runtimes can significantly benefit
from hardware support and hardware-software co-design [10, 13, 21,
22]. However, despite their pervasiveness, these types of workloads
are often underrepresented in computer architecture research, and
most papers in premier conferences use native workloads such as
SPEC CPU to evaluate architectural ideas.

While native workloads represent an important subset of appli-
cations, they are not representative of a large fraction of workloads
in some of the most important spaces, including cloud and mobile.
This disconnect between real-world workloads and evaluation was
pointed out in a prominent Communications-of-the-ACM article
almost 10 years ago [7], but not much has changed since then. A
part of the problem is arguably that there is currently no good
way to evaluate managed languages in the context of computer
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architecture research. Specifically, all of the major approaches fall
short when applied to managed-language applications:
• High-level full-system simulators do not provide the fidelity
to fully capture managed-language workloads. These work-
loads often interact at very small time-scales. For example,
garbage collectors may introduce small delays of ≈ 10 cycles
each, scattered through the application [10]. Cumulatively,
these delays add up to substantial overheads but individually,
they can only be captured with a high-fidelity model.
• Software-based cycle-accurate simulators are too slow for
managed workloads. These simulators typically achieve on
the order of 400 KIPS [17], or 1s of simulated time per 1.5h
of simulation (per core). Managed-language workloads are
typically long-running (i.e., a minute and more) and run
across a large number of cores, which means that simulating
an 8-core workload for 1 minute takes around a month.
• Native workloads often take advantage of sampling-based
approaches, or use solutions such as Simpoints [20] to deter-
mine regions of interest in workloads and then only simulate
those regions. This does not work for managed workloads,
as they consist of several components running in parallel
and affecting each other, including the garbage collector, JIT
compiler and features with dynamically changing state (such
as biased locks, inline caching for dynamic dispatch, etc.).
In addition, managed application performance is often not
dominated by specific kernels or regions of interests, which
makes approaches that change between high-level and de-
tailed simulation modes (e.g., MARSSx86 [17], Sniper [9])
unsuitable for many of these workloads.

For these reasons, a large fraction of managed-language research
relies on stock hardware for experimentation. While this has en-
abled a large amount of research on improving garbage collectors,
JIT compilers and runtime system abstractions, there has been rela-
tively little research on hardware-software co-design for managed
languages. Further, the research that does exist in this area typically
explores a single design point, often in the context of a released
chip or product, such as Azul’s Vega appliance [10]. Architectural
design-space exploration is rare, especially in academia.

We believe that easy-to-modify open-source hardware based
on the RISC-V ISA, combined with an easy-to-modify managed-
language runtime system, can provide an opportunity to address
this problem and perform hardware-software research that was
infeasible before. Both pieces of infrastructure already exists:

On one hand, the RocketChip SoC generator [5] provides the
infrastructure to generate full SoCs that are realistic (i.e., used in
products), and can target both ASIC and FPGA flows. Using an
FPGA-based simulation framework such as Strober [14] enables
simulating the performance of real RocketChip SoCs at high-fidelity,
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with FPGA frequencies of 30-100 MHz. This means that this infras-
tructure can achieve the realism, fidelity and simulation speed
required to simulate managed-language workloads.

On the other hand, infrastructure exists formanaged-language re-
search. Specifically, the Jikes Research Virtual Machine (JikesRVM)
is a Java VM geared towards experimentation. JikesRVM is easy to
modify, thanks to being written in a high-level language (Java) and
using a modular software design that facilitates changing compo-
nents such as the object layout, GC or JIT passes.

We believe that bringing these two projects together will enable
novel hardware-software research. In this paper, we present one
important step towards this vision, by porting JikesRVM to RISC-V.
We first discuss why such a port is necessary. We then describe
the porting effort in detail, in the hope that it will be helpful for
others porting managed runtime systems to RISC-V. Finally, we
demonstrate the running system, and show the research it enables.

2 BACKGROUND
The shortcomings of existing infrastructure to perform managed-
language research have been well-established. For example, Yang
et al. demonstrated that sampling Java applications at 100 KHz or
less misses important performance characteristics [23].

Another example is a 2005 paper by Hertz and Berger [11]: In
order to investigate trade-offs between manual and automatic mem-
orymanagement, the authors had to instrument an existing runtime
system to extract allocated memory addresses, and – in a second
pass – inject addresses produced by an oracle. The authors found
that this was difficult to achieve in software, as the software instru-
mentation led to a 2-33% perturbation in execution time, which was
larger than the effect they were trying to measure. They therefore
decided to use a software simulator (Dynamic SimpleScalar [12]) for
these experiments. While appropriate in this setting, this approach
is often problematic in terms of simulation speed and the reliability
of the resulting performance numbers.

To facilitate this type of research, several projects have tried
to enable simulation of managed workloads. Zsim [18] enables
long-running multi-core workloads by using dynamic instrumenta-
tion, but this approach sacrifices accuracy and cannot account for
fine-grained interactions such as write-barriers in garbage collec-
tors. Other examples are MARSSx86 [17] and Sniper [9], which are
full-system emulators that can fast-forward to regions of interest
and then simulate those regions at high fidelity. Both simulators
have been used to simulate Java workloads [8, 19]. However, this
approach is only appropriate if short, representative regions can
be found, and architectural state does not build up slowly. Both
are problems for managed workloads, and it is unclear how many
managed applications are amenable to this methodology.

We believe that FPGA-based simulators are emerging as the most
promising candidate for managed-language research. While these
simulators were traditionally constrained by the size of available
FPGAs, this has changed in recent years, and there are now large
FPGA boards available – even for rent in the public cloud [1] – that
can address enough DRAM to run managed workloads on simu-
lated multi-core SoCs. This infrastructure can achieve both high
simulation speed and fidelity by using the FPGA to perform cycle-
accurate simulation of the on-chip RTL, and using cycle-accurate
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timing models for off-chip components such as DRAM (running
either on the FPGA or on a host machine). This approach can real-
istically simulate the performance of an ASIC implementation, and
provides a combination of accuracy, simulation speed and modifia-
bility that makes hardware and software co-design feasible.

3 THE JIKES RVM
To experimentwithmanaged runtimes, we require a runtime system
that can be easily modified. We picked the Jikes Research VM [4],
which is the de facto standard in managed-language research.

Jikes is a VM for Java, and is highly representative of other man-
aged runtime systems. We ported JikesRVM and its non-optimizing
Baseline JIT compiler to RISC-V. To our knowledge, this results
in the first full-system platform for hardware-software research
on Java applications, allowing modification of the entire hardware
and software stack. In the following section, we describe our port.
We particularly focus on aspects that will be useful for authors of
future managed-runtime ports for RISC-V.

3.1 Jikes’s Software Design
In order to make it easy to modify, JikesRVM embraces object-
oriented design principles and is written in Java. This design is
often called a metacircular runtime system (i.e., a runtime system
written in the same language it executes).

This approach introduces new challenges, as Java is not intended
for the low-level system programming required to implement a run-
time system such as a JVM. Jikes solves this problem by providing a
library called VM Magic, with classes representing low-level primi-
tives such as pointers (Address) or references (ObjectReference).
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From a Java perspective, these primitives are normal objects with
methods such as Address.loadInt(addr). However, Jikes’s own
JIT compiler detects them and handles them specially.

3.2 Bootstrap Process
JikesRVM requires an existing “bootstrap” JVM, such as OpenJDK’s
Hotspot JVM (Figure 1). To compile Jikes, it is first loaded into
this existing JVM, as a normal Java program where the VM Magic
primitives are regular objects with an implementation that emulates
their intended behavior. Once JikesRVM runs in the bootstrap VM,
it loads an instance of itself, which results in Jikes’s own classes
being loaded and compiled by Jikes’s JIT compiler. However, as
this is now Jikes’s JIT (and not the bootstrap VM’s), it will detect
calls to VM Magic classes and replace them with the actual code
executing low-level operations, such as memory stores.

In a final step, the instantiated objects belonging to the nested
JikesRVM instance (including their JIT-compiled code) are taken
and copied into an image, which is then stored to disk. This image
now contains compiled code for all of Jikes’s core classes, which
can be executed without the bootstrap JVM in place.

3.3 Running Jikes RVM
Once Jikes has been compiled, it can be run by executing a small
bootloader program (written in C), which takes the image generated
during the boostrapping process and maps it into its address space
(Figure 2). This part of the address space represents the initial heap
that the JVM is executing on. The bootloader then sets up the Java
stack and jumps into a boot function which initializes the different
components of the JVM. This process involves many steps and
requires loading and executing initializers for 93 classes.

Once the JVM has booted up, it parses the command line argu-
ments, uses them to determine a .jar or .class file to load, and
then jumps into the main function of the program.

4 PORTING THE JIKES RVM TO RISC-V
Porting JikesRVM to a new ISA is complicated by Jikes’s metacir-
cular nature. Fortunately, the JVM already supports two ISAs (x86
and PowerPC), and therefore has infrastructure in place to factor
out ISA-specific portions of code (such as the assembler, compiler,
native-function interface, stack walker, etc.). Porting JikesRVM
therefore primarily required creating RISC-V implementations of
these different components. Overall, our port involved modifica-
tions to 86 files and added around 15,000 lines of code.

4.1 Bringing up the Environment
The first step in porting JikesRVM was to bring up an environment
that contains all the dependencies required by JikesRVM. Specifi-
cally, this included a Linux distribution with a basic set of tools and
libraries, including glibc, bash, etc. JikesRVM also requires com-
piling the GNU Classpath class library for a RISC-V target, which
has further dependencies on various different libraries.

To facilitate building these different dependencies, we rely on
a RISC-V port of the Yocto Linux distribution generator [3]. Yocto
provides an environment that can cross-compile the Linux kernel
and a range of packages on a host system, and generates an image
that can then booted in a RISC-V emulator or on actual RISC-V

Figure 3: Part of the Python script that auto-generates the
assembler, and the code that it generates.

hardware. We used Yocto to generate an image which we then use
as the environment to run JikesRVM within riscv-qemu.

In addition to generating the image, targeting JikesRVM to RISC-
V also required us to have the cross-compiler and libraries available
during the build process, to compile components such as the boot-
loader or the C libraries backing GNU Classpath. Yocto facilitates
this by creating an SDK, which is a package that includes the en-
tire cross-compile toolchain and development packages such as
common libraries or autoconf. This SDK can be installed on any
machine, and contains a script that adds the cross-compilers to the
current command-line environment. Using a Yocto SDK provides
us with all the tools and libraries we need to build Jikes, without
building a full RISC-V development environment.

4.2 Debugging Infrastructure
To achieve a fast compile loop, we used a Python script that cross-
compiles JikesRVM on the host system, copies the output into the
Yocto-generated image and runs this image in QEMU. We also mod-
ified the image with a custom /etc/inittab script that launches
JikesRVM, pipes the output into a file and then shuts down the
QEMU instance. This gives us a fast turnaround for debugging.

After setting up the scripts, the next step consisted of porting
JikesRVM’s bootloader code. The code only includes a small number
of architecture-dependent portions, specifically the assembly code
that sets up the Java stack and jumps into a Java function.

Once this step was completed, the next task was to port the
JIT compiler. To do this incrementally, we added test code at the
beginning of the JVM’s boot function (VM.boot()), which is the
first function the bootloader jumps into after setting up the stack.
This allowed us to first implement simple Java opcodes such as
integer operations, and then build up from there.
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4.3 Porting the Assembler
Before we could start porting the JIT compiler, we had to imple-
ment an assembler that can generate RISC-V instructions. While
Jikes’s assemblers for PPC and x86 are hand-written, we were able
to automate this process for RISC-V, thanks to the riscv-opcodes
repository [2]. This repository provides a machine-readable ver-
sion of all RISC-V instructions. Building on a Python script that
is available as part of riscv-opcodes, we generated most of the
assembler automatically, creating an emitX() function for every
instruction X in the instruction set (Figure 3).

One case that needed special attention were branches. The JIT
compiler often generates branches with placeholders for the target
offset, which are rewritten at a later point. In RISC-V, we had to
be careful to ensure to distinguish between short branches (that fit
into the branch instruction’s 12-bit offset) and general branches,
for which we need to emit a branch followed by a jal instruction.
The assembler provides functions to emit both types of branches. If
the target is unknown in advance, a general branch is emitted.

4.4 Porting the JIT Compiler
The non-optimizing JIT compiler contains a set of functions cor-
responding to Java bytecode instructions. Each of these functions
calls into the assembler to emit a RISC-V instruction sequence that
implements the specific Java opcode. The JIT compiler also pro-
vides instruction sequences for the VM Magic functions described
in Section 3.1. Finally, the JIT compiler provides functions that emit
code for special cases, such as prologues, epilogues and yield points
(yield points are emitted at certain points throughout the program
and check whether a thread is supposed to block – e.g., because of
garbage collection or revoking a biased lock).

We started by implementing prologues, epilogues and several ba-
sic integer instructions. This allowed us to run small test programs
by injecting them into Jikes’s boot function. However, for programs
that were more complex, we required more information to debug
the execution. As JIT-compiled code does not provide symbol tables,
it is difficult to debug this code with traditional debuggers such as
GDB. We therefore chose a different approach.

We instrumented the JIT compiler to emit a trace of its execution.
For each executed opcode, we print the name of the opcode, the
corresponding instruction sequence, and the current state (the top
of the stack). We achieve this by prefixing the instruction sequence
for each opcode with an invalid load that will trigger a SEGFAULT.
Additionally, we also include auxiliary information:

0x...000: LD X0, 1024(X0) # SEGFAULT
0x...004: (Number of instructions)
0x...008: (Opcode)
0x...00c: (Stack Offset)

When the load is reached, it will trigger an exception that can be
caught in the bootloader program. The bootloader then reads the
auxiliary information and outputs the desired debug information,
including a disassembled version of the instructions associated with
this bytecode (Figure 4). Note that we did not have to write our
own disassembler for this. Instead, we simply printed DASM(INST)
to the command line, and piped the result through the spike-dasm
program that ships with the Spike ISA simulator.

Figure 4: Debug output for the JIT compiler.

As the test programs grew, we found that the debug output
became too cumbersome to work with. We therefore added a modi-
fication to JikesRVM which allows us to only selectively inject this
instrumentation. Specifically, we added a @SoftwareBreakpoints
annotation which can be attached to any function in JikesRVM.
If this annotation is present, the instrumentation code will be in-
jected by the JIT compiler (and we will get a trace of its execution),
otherwise the function will be compiled normally.

4.5 Foreign-Function Calls
One of the most challenging aspects of porting Jikes was to support
foreign-function calls. Jikes provides two mechanisms to call into C
code: JNI calls (which is Java’s mechanism to call into C functions)
and a simpler mechanism named syscalls. JNI is a complex mech-
anism that enables calls in both directions (C to Java and Java to
C). This makes it possible to have a mix of both Java and C stack-
frames co-exist on the same stack. Jikes therefore needs to be able
to unwind both types of frames for delivering exceptions, and scan
them for spilled pointers at the beginning of GC passes. This means
that JNI calls require maintaining a side table of pointers (for stack
scanning), check for yield points when crossing a language barrier,
and support the full C calling convention, including varargs.

Avoiding this complexity, Jikes’s syscalls mechanism is intended
to implement simple functions such as writing bytes to a stream or
executing math functions like sqrt. Instead of supporting the full
calling convention, it only supports simple calls, does not check for
yield points and cannot call back into Java. For debugging purposes,
we found it important to implement syscalls early, but JNI functions
require a large amount of work and we decided to leave them to the
end. Syscalls are emitted by the JIT, while JNI calls are generated by
a special JNICompiler. Implementing syscalls is sufficient to run
test programs with simple command line output.

4.6 Exceptions & Run-time Checks
Java checks for a number of corner cases and triggers exceptions
if necessary (e.g., array bounds checks or divide-by-zero checks).
We found that the best approach for this in RISC-V was to trigger
exceptions through loads to invalid addresses. This causes execution
to drop back into the bootloader, where we can determine which
exception was triggered (based on the failing instruction) and then
jump into a Java function that delivers the exception and unwinds
the stack. The exception delivery itself requires architecture-specific
code for unwinding both Java and JNI (native) stack-frames.
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4.7 Additional Features
While the features discussed so far enable increasingly large test pro-
grams (and executing a large part of the VM.boot function), complet-
ing the full boot sequence requires a large number of architecture-
specific features, including locks, lazy compilation trampolines, dy-
namic bridges (which are necessary for JIT-compiling a function by
running the JIT on the same stack, and then transparently transfer-
ring execution to the JITed code) and implementations of interface
method tables (which require synthesizing architecture-specific
code to traverse a search tree). To complete the boot sequence and
run real programs, all of these features are required.

4.8 Summary
Our port of the baseline compiler is complete in that it passes all of
the unit tests that are part of JikesRVM and runs the subset of Da-
capo [6] benchmarks that are supported by our version of JikesRVM
(avrora, luindex, lusearch, pmd, sunflow, xalan). We successfully
ran these benchmarks both in simulation, and on a RocketChip
instance mapped to an FPGA board.

Figure 5 shows one of these benchmarks running on RISC-V (cap-
tured from an FPGA setup). Being able to run Dacapo benchmarks
gives us a high degree of confidence in the correctness of our port,
as the Dacapo suite consists of large and complex benchmarks. For
example, the benchmarks presented here include a raytracer, the
Lucene search engine, and a code analyzer.

5 EVALUATION
With a complete port of JikesRVM, we now have the ability to run
Java workloads on RISC-V systems and modify both the JVM and
the underlying hardware. To demonstrate this experimental setup,
we ran JikesRVM on RocketChip in FPGA-based simulation. We
use Xilinx ZC706 development boards, which are comprised of an
Zynq XC7Z045 FPGA with 8 GiB of fabric-attached DRAM. We use
an FPGA-based simulation framework similar to Strober [14], with
timing models to simulate DRAM accesses. This setup simulates a
single Rocket 5-stage in-order CPU, with 16 KiB L1 instruction and
data caches and a simulated 1 MiB L2 cache.

Using this setup, we achieved effective simulation speeds of 10
MIPS and more. We simulate a design with an operating frequency
of 1 GHz, a L2 latency of 23 cycles and a DRAM latency of 80
cycles. Running these experiments for the Dacapo benchmarks
(default input size) allowed us to collect performance data, as well
as instruction counts and other metrics on our platform. Executing
the full set of benchmarks takes over 1.2 trillion instructions, which
would take 35 days if simulated at 400 KIPS.

The following table presents the number of dynamic instructions
for each of the benchmarks, as well as their simulated runtime:

Benchmarks Instructions (B) Runtime (s)
avrora 118.0 311.8
luindex 47.7 103.5
lusearch 263.5 597.2
pmd 158.5 346.8

sunflow 504.8 1,352.9
xalan 190.8 466.4

Figure 5: Output of JikesRVM running one of the Dacapo
benchmarks, with verbose GC output (processed log file).

JikesRVM is configured to use the Mark & Sweep garbage collector.
With a 100MB maximum heap size, the JVM spends the following
fraction of time in GC for each benchmark:

Benchmarks GC Pauses Time in GC
avrora 10 6%
luindex 8 13%
lusearch 90 35%
pmd 26 30%

sunflow 52 9%
xalan 39 27%

While the JVM’s performance can be improved substantially, note
that the baseline compiler’s primary responsibility is to run code
that executes rarely. In order to generate performance-competitive
code, we need to port the optimizing JIT compiler as well (for which
the baseline compiler is a prerequisite).

6 RESEARCH CASE STUDY
We believe that FPGA-based full-system simulation of JikesRVM
workloads on RISC-V hardware enables studies that are difficult
to perform in a traditional setup. Specifically, we can modify the
software stack as well as the underlying hardware, while collecting
accurate numbers that can capture fine-grained interactions for
full workload executions with short simulation times. This enables
design-space explorations that modify both hardware and software
layers, and detailed instrumentation of the entire system.

To demonstrate these capabilities, we conduct a study that ad-
dresses challenges similar to those described by Hertz and Berger’s
paper [11] from Section 2. Many interactions within managed run-
time systems are fine-grained and therefore difficult to measure.
One example of these interactions are memory allocations, which
occur frequently but complete quickly most of the time. We are
often interested in the causes of long allocations.

To record these allocations in a traditional system, we would
have two options: we could either use an instrumentation-based
approach or a sampling-based approach. However, the former in-
troduces observer effects and perturbs the execution time, while
the latter traditionally achieves low sampling frequencies and can
hide important details. Figure 6 shows an example of this: While
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(a) 600ms of execution sampled at 1 KHz (b) 20ms slice sampled at 1 KHz (c) The same 20ms in FPGA simulation

Figure 6: Contrasting an approach that samples time spent in allocation at a 1 KHz-granularity with recording every allocation
in hardware without introducing observer effects to the application (numbers are from the pmd Dacapo benchmark). Results
were collected in a single run and aggregated to demonstrate the effect of different sampling rates.

Figure 7: Addresses returned by the JikesRVM free-list allo-
cator. Colors indicate the allocation size class.

sampling at 1 KHz helps us understand the macro-behavior of the
application (Figure 6a), it does not tell us about individual allo-
cations (Figure 6b). To gain real insight into the behavior of the
memory allocator, we need to be able to record every single alloca-
tion latency – without perturbing the execution time.

One approach to this problem would be to use a system like
SHIM [23], which enables high-resolution sampling while mini-
mizing the observer effect. It achieves this by running an observer
thread in a second hardware context on an SMT-enabled multipro-
cessor, sampling at a resolution of 1,200 cycles at only 2% overhead.
SHIM can also perform measurements at an extremely fine-grained
solution of ≈ 15 cycles, but then the perturbation becomes large, at
an overhead of 61%. While this is sufficient to understand program
behavior, it is limited to counters exposed by the hardware. Specif-
ically, SHIM is designed for existing SMT processors and cannot
instrument arbitrary signals in a modifiable hardware design.

Infrastructure such as JikesRVM running on RocketChip enables
us to do this: by adding on-chip buffers to the RTL design, we
can record every allocation in the execution of the program, and
produce a detailed trace without perturbing the execution time.
Specifically, we record the start and end time, as well as the size
class and memory address associated with every allocation.

Figure 6c shows the result: by looking at the duration of every
allocation, we can see that most allocations complete in a small
amount of time (≈ 4, 000 cycles), while some allocations take 10-100
× longer. This gives us insight into the behavior of the memory

allocator (in this case, a segregated free-list allocator). In the com-
mon case, the memory allocator consumes a set of per-size-class
free lists, and completes quickly if a block is available on the list. If
not, the allocator has to remove a new block from the global free
list, zero the block’s memory, and create a new free list.

There are other insights that can be gained from this trace as
well. For example, looking at allocations for the same size class and
counting how many of them use the fast path, we can deduce the
amount of memory fragmentation. We can also analyze locality:
looking at the addresses that are returned by the allocator (Fig-
ure 7), we see that subsequent allocations to the same size class are
typically contiguous, but overall locality is low. This confirms that
segregated free-list allocators produce poor locality.

Memory allocators are only one example of experiments that are
possible with this infrastructure, and we believe that it will open up
new research directions in a wide range of areas. One specific area
that we are targeting is hardware support for garbage collection,
and we are in the process of building a prototype system [15].

7 CONCLUSION
In this paper, we presented our port of JikesRVM to RISC-V, and
demonstrate it running on FPGA-based RISC-V hardware. We be-
lieve that the combination of a managed-runtime system and hard-
ware that can be easily modified will enable new kinds of hardware-
software research, as demonstrated by our case study.
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