
A RISC-V Extension for the Fresh Breeze Architecture
Jack B. Dennis

MIT CSAIL
Cambridge, MA

dennis@csail.mit.edu

Willie Lim
MIT CSAIL

Cambridge, MA
wlim@csail.mit.edu

ABSTRACT
We report on a RISC-V extension for a novel multi-core computer
organization able to execute applications with high performance
and energy efficiency. Novel features of this architecture include
support for data objects represented by trees of 128-byte memory
chunks, and hardware implementation of task scheduling and load
balancing. We call our project Fresh Breeze1 in view of its novelty
and potential.

User programs are written in funJava, a functional subset of the
Java programming language, compiled into independent blocks of
instructions called codelets, and run on an architecture model using
our Kiva simulator.

Extensions to the RISC-V core will consist of special instructions
for creating and accessing memory chunks, and for spawning and
coordinating tasks for codelet execution. Also, the core processor
will include an AutoBuffer that holds memory chunks for direct
access that are automatically loaded in response to read instructions.

These extensions will permit us to build an FPGA Fresh Breeze
prototype using the BlueDBM facility of the Computation Struc-
tures Group in theMIT Computer Science and Artificial Intelligence
Laboratory.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
• Hardware→ Simulation and emulation;

KEYWORDS
Fresh Breeze, RISC-V, trees of chunks, fine grain tasking
ACM Reference format:
Jack B. Dennis andWillie Lim. 2017. A RISC-V Extension for the Fresh Breeze
Architecture. In Proceedings of First Workshop on Computer Architecture
Research with RISC-V, Boston, Massachusetts USA, October 2017 (CARRV2017),
6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Over the past several years the authors have worked with Prof.
Guang Gao of the University of Delaware and Prof. Huang Lei of
1The ’Fresh Breeze’ name is chosen as a continuation of the MIT practice of nam-
ing computer projects after weather patterns in the spirit of Whirlwind [11] and
Monsoon [10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CARRV2017, October 2017, Boston, Massachusetts USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN YYYYYYY. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Prairie View A & M University on a multi-core computer organiza-
tion able to execute applications with high performance and energy
efficiency. Novel features of this architecture include support for
data objects represented by trees of 1024-bit (128-byte) memory
chunks, and hardware implementation of task scheduling and load
balancing. We call our project Fresh Breeze in view of its novelty and
potential. The merits of these features have been shown through
early simulation experiments[5, 12].

Fresh Breeze user programs are written in funJava, a functional
restricted subset of the Java programming language, are compiled [4]
into independent blocks of instructions called codelets, and run on
an architecture model using our Kiva simulator. Our recent simu-
lation experiments using a neural network computation [7] have
shown that the architecture can exploit fine grain parallelism and
rapidly distribute thousands of tasks over many processing units.
Linear scaling of performance has been demonstrated for up to 256
processing units.

We wish to advance our work toward the design and fabrication
of a Fresh Breeze multi-core processor chip by building a proto-
type using FPGA technology. The RISC-V technology provides an
ideal basis for this step because RISC-V is amenable to the needed
processor extensions, and RISC-V support is available with the
BlueDBM [8] facility at the Computation Structures Group in the
MIT Computer Science and Artificial Intelligence Laboratory.

The following sections provide an overview of the Fresh Breeze
architecture and programming model, and explain the RICS V ex-
tensions needed to implement trees of chunks representation of
data objects and the fine grain tasking of the programming model.

2 FRESH BREEZE ARCHITECTURE
Figure 1 shows a Fresh Breeze system [2] with four Processing
Units connected to four Memory Units through two 4 × 4 (4-input,
4-output) packet switching networks – one for routing memory
commands from the Processing Units to the Memory Units and the
other for routing memory responses from the Memory Units back
to the Processing Units. A large system with N Processing Units
and N Memory Units will use N × N packet networks.

Each Processing Unit has a Task Scheduler that holds a queue of
TaskRecords of tasks awaiting execution by the Processing Unit. The
Load balancer distributes tasks evenly over the Processing Units
by directing the Task Schedulers of busy Processing Units to send
TaskRecords of pending tasks to less busy ones.

Each Processing Unit also has an associated AutoBuffer that
holds active memory chunks for direct access, as in a conventional
cache memory. However use of a cache tag memory is avoided
by the scheme described in Section 5.2. When a read instruction
references a chunk not present in the AutoBuffer, the chunk is
loaded by sending a read command to the appropriate Memory
Unit. Write instructions only refer to newly created chunks in

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CARRV2017, October 2017, Boston, Massachusetts USA Jack B. Dennis and Willie Lim

Figure 1: A four-core Fresh Breeze system.

the AutoBuffer; when the task that writes to elements of a new
chunk terminates, the new chunk is written to its assigned Memory
Unit and no further writes of the chunk are permitted. The least
recently accessed chunks in the AutoBuffer are chosen for eviction
as needed. Note that the write-once property permits eviction of
chunks without the need to write the chunks back to Memory Units.

To provide latency tolerance in memory access, a number of
execution slots is used. In our simulated Fresh Breeze system, each
Processing Unit has six execution slots. Each of these slots has its
own complete set of registers, program counter, and a set of chunk
buffers in the AutoBuffer. When execution of instructions in a task
cannot proceed due to its waiting for a response from a Memory
Unit, that task is suspended and the Task Scheduler switches the
core to an active task in another execution slot, or starts a new task
if there are no slots with active tasks.

The RISC-V extensions needed to implement mutiple execution
slots are described in Section 5, together with the special instruc-
tions that will be implemented for chunk-based representations of
data objects and fine grain task scheduling.

3 FRESH BREEZE PROGRAMMING MODEL
The Fresh Breeze system architecture directly supports a program-
ming model designed for natural expression of all forms of paral-
lelism present in applications. This includes expression parallelism,
data parallel computation, producer-consumer parallelism and con-
current transaction processing. In addition, the programmingmodel
satisfies requirements for modular software construction [2], en-
suring that any program module may be used without change as
a component of other program modules. This section describes
data representation and tasking in the Fresh Breeze programming
model.

3.1 Data Object Representation
All data objects in a Fresh Breeze system are represented by trees
of fixed-size chunks of memory. A chunk holds up to 16 items,
each of which may be either a data value or the handle of another
memory chunk. The handle of a memory chunk serves as a globally
valid means to locate the chunk within the storage system. The
collection of all memory chunks forms a multi-rooted directed
acyclic graph (DAG) that is the “heap” held by the Fresh Breeze
multi-level memory system. Chunks are created and filled with
data, but are frozen before being shared with concurrent tasks. This
write-once policy eliminates data consistency issues and simplifies

Figure 2: Spawning a team of workers in the Fresh Breeze
tasking model.

memory management by precluding creation of cycles in the graph
of chunks and references.

Such a memory model provides a global addressing environment,
a virtual one-level store, shared by all user jobs and all cores of a
many-core multi-user computing system. It covers the entirety of
online storage, replacing the separate means of accessing files and
databases in conventional systems, thereby eliminating the distinc-
tion between “in core” and “out of core” versions of algorithms.

3.2 Tasking Model: Codelets
The basic unit of parallelism in a Fresh Breeze system is a task, the
activity of performing a single execution of a block of instructions
called a codelet. The organization of multiple tasks is expressed
in a way similar to the spawn/join model for parallel program-
ming of Cilk [6]: As shown in Figure 2, a master task may spawn
one or more worker tasks to execute independent instances of the
same or different codelets. Worker tasks may receive data objects
as arguments provided by the master task, and each worker task
contributes the results of its activity to a continuation task using a
special type of memory chunk called a sync chunk [3]. The Fresh
Breeze tasking model differs from Cilk in that the master task does
not continue after spawning the workers and there is no interac-
tion between the master and the worker or among the workers
other than the contribution of each worker to the continuation
task. The scheme matches the data parallel features of a program-
ming language such as Sisal [9] or NESL [1]. Through recursive
use of this scheme, a program can generate an arbitrary hierarchy
of concurrent tasks corresponding to available parallelism in the
computation being performed. Sync chunks can also implement the
synchronization required for the producer/consumer parallelism
prevalent in processing data streams.

4 FRESH BREEZE CODELETS
To illustrate how codelets are constructed to implement the scheme
of Figure 2 we present in this section three of the Fresh Breeze
codelets generated to perform the dot product computation for
two vectors of equal but arbitrary length. The funJava method for

A RISC-V Extension for the Fresh Breeze Architecture CARRV2017, October 2017, Boston, Massachusetts USA

long DotProduct(long[] a, long[] b, int len) {
long sum = 0;
for (int i = 0; i < len; i++) {

sum = sum + a[i] * b[i];
}
return sum;

}

Figure 3: The dot product method written in funJava.

this computation is shown in Figure 3. In the Fresh Breeze imple-
mentation each of the given vectors is represented by a tree of
chunks such that each vector is divided into a series of correspond-
ing 16-element segments represented by leaf chunks of the two
trees.

Figure 5 shows the codelet (Codelet 2) that performs the dot
product of a pair of leaf segments of the given vectors, and in
Figure 4 the portion of Codelet 1 that spawns up to 16 worker tasks
that execute Codelet 2. The principal arguments of Codelet 1 are the
handles of the two-level subtrees whose root nodes are the parent
chunks of the leaf nodes. Figure 6 shows Codelet 3, the continuation
codelet that is executed after all worker tasks have completed their
computations.

These figures show the Fresh Breeze instructions of each codelet.
Instructions access machine registers using register indexes. Regis-
ters are 64 bits wide, so operands that are full words are accessed
using even indexes; 32-bit half-word operands are accessed using
even integers for the left half and odd integers for the right half of
a register.

The following abbreviations are used:
S0: source zero;
S1: source one;
LV: literal value;
D: destination;
H: handle;
Off: offset or index;
Lab: label of statement to jump to.
Most instructions of the Fresh Breeze ISA are similar to typical

RISC instructions; the exceptions are the special instructions for
memory operations and special instructions for implementing the
tasking scheme of Figure 2. In Figure 4, The SyncCreate (instruction
22) creates a sync chunk set to spawn continuation Codelet 3
when all worker tasks have terminated. This is followed by a loop
that executes TaskSpawn (instruction # 38) to initiate each worker
task using Codelet 2. Then TaskQuit (instruction # 41) terminates
the task.

The code in Figure 5 is a straightforward loop for computing the
dot product. On completion the SyncUpdate (instruction # 13) is used
to forward the result in register # 16 to the sync chunk, after which
the codelet terminates with a TaskQuit instruction (instruction # 14).
Arguments zero and one of the SyncUpdate instruction provide the
handle of the sync chunk and the index of the worker task for
which the result is being submitted. Execution of the SyncUpdate by
the last worker task to terminate causes Codelet 3 to be spawned
with argument zero (register # 0) holding the handle of a chunk
containing the results (long values in this case) of worker tasks.

Codelet 1:
19]: LMove S0: 0; -> D: 26
20]: IMove S0: 2; -> D: 28
21]: IMove S0: 41; -> D: 29
22]: SyncCreate Code: 3;

sigCnt: 11; itemCnt: 41 -> D: 26;
argsBase: 13 argsCnt: 2

23]: ISet 0 -> D: 28
24]: IfIGeq S0: 28; S1: 41; Lab: 41
25]: ISub S0: 41; S1: 0; LV: 1; -> D: 52
26]: IfINeq S0: 28; S1: 52; Lab: 29
27]: IMove S0: 42; -> D: 53
28]: Jump Lab: 30
29]: IMove S0: 37; -> D: 53
30]: ReadFull H: 4; Off: 28; -> D: 54
31]: ReadFull H: 6; Off: 28; -> D: 56
32]: IMul S0: 28; S1: 37; -> D: 58
33]: IAdd S0: 8; S1: 58; -> D: 59
34]: LMove S0: 54; -> D: 30
35]: LMove S0: 56; -> D: 32
36]: IMove S0: 59; -> D: 34
37]: IMove S0: 53; -> D: 35
38]: TaskSpawn Code: 2; argsBase: 13; argsCnt: 5
39]: IAdd S0: 28; S1: 0; LV: 1; -> D: 28
40]: Jump Lab: 24
41]: TaskQuit

Figure 4: Portion of Fresh Breeze Codelet 1 for creating the
sync chunk and spawning worker tasks.

Codelet 2:
0]: ISet 1 -> D: 10
1]: ISet 0 -> D: 11
2]: LSet 0 -> D: 12
3]: IMove S0: 11; -> D: 14
4]: LMove S0: 12; -> D: 16
5]: IfIGeq S0: 14; S1: 9; Lab: 13
6]: IAdd S0: 14; S1: 8; -> D: 15
7]: ReadFull H: 6; Off: 14; -> D: 18
8]: ReadFull H: 4; Off: 14; -> D: 20
9]: LMul S0: 18; S1: 20; -> D: 22
10]: IAdd S0: 14; S1: 0; LV: 1; -> D: 14
11]: LAdd S0: 16; S1: 22; -> D: 16
12]: Jump Lab: 5
13]: SyncUpdate Sync: 0; Off: 2; Data: 16
14]: TaskQuit

Figure 5: Fresh BreezeCodelet 2 for performing the dot prod-
uct of two leaf vector segments of 16 or fewer elements.

The instructions of Codelet 3 (Figure 6) implement a loop that reads
(instruction # 4) and sums (instruction # 5) values from the results
chunk and forwards the sum with a SyncUpdate (instruction # 8).

CARRV2017, October 2017, Boston, Massachusetts USA Jack B. Dennis and Willie Lim

Codelet 3:
0]: ISet CV: 1 -> D: 7
1]: ISet CV: 0 -> D: 10
2]: LSet CV: 0 -> D: 8
3]: IfIGeq S0: 10; S1: 5; Lab: 8
4]: ReadFull H: 0; Off: 10; -> D: 12
5]: LAdd S0: 8; S1: 12; -> D: 8
6]: IAdd S0: 10; S1: 7; LV: 1; -> D: 10
7]: Jump Lab: 3
8]: SyncUpdate Sync: 4; Off: 4; Data: 8
9]: TaskQuit

Figure 6: Fresh Breeze continuation codelet (Codelet 3) for
summing the leaf segment results.

Implementation details of the memory and tasking instructions
are presented in Section 5.3 and Section 5.6, respectively. The mem-
ory commands and responses exchanged between the Processing
Units and Memory Units are briefly described in Section 5.5.

5 RISC-V EXTENSIONS
For the Processing Units of a Fresh Breeze multi-core processing
chip, we propose using a basic RISC-V core with extensions to
implement multiple execution slots, the AutoBuffer, the trees of
chunks memory representation for data objects, and operations
for tasking. This will create a Processing Unit able to perform all
instructions used in the code examples in Figures 4, 5 and 6. All of
the standard arithmetic and logic instructions will be retained as
implemented in the basic RISC-V core with the double precision
and floating point extensions. For Fresh Breeze memory operations
and fine grain tasking, the RISC-V ISA will be extended to include
special instructions as described in the paragraphs that follow.

To support tasking as discussed in Section 3, we will add instruc-
tions to support creation and management of tasks. Execution of a
Fresh Breeze task requires the index of the codelet to be executed,
and the set of up to sixteen argument values that constitute input
data for the task. This information is contained in a data object
called a TaskRecord which has four fields:

• taskId (32 bits): The task identifier; used for debugging pur-
poses or to track movement of a TaskRecord.

• codeIdx (16 bits): The index of the codelet (set of instructions)
to be executed.

• argsCnt(4 bits): The number of arguments needed for the
task.

• argsList (64 bits): The handle of a chunk containing the argu-
ments.

The simplicity of the TaskRecord is a consequence of using a
common global address space (the collection of chunk handles) for
all tasks and for all users of a Fresh Breeze system. The Task Sched-
uler for each Processing Unit is simply a FIFO queue in which the
entries are TaskRecords. Furthermore load balancing is performed
simply by moving TaskRecords from one Task Scheduler to another.
This is why a Fresh Breeze System can scale to utilize large numbers
of Processing Units effectively for normal problem sizes.

The RISC-V extensions needed for use as a Processing Unit of
the Fresh Breeze architecture are:

• Several selectable register sets to support multiple execution
slots.

• Cache memory extension adapted to implement the Fresh
Breeze AutoBuffer.

• Instructions for building and accessing data objects repre-
sented as trees of memory chunks.

• Instructions to support spawning and coordination of worker
tasks.

The subsections that follow describe these extensions and the
needed special instructions. The version of RISC-V to be used as
the base for these extensions will have 32 64-bit machine registers.
Instruction fields for source and destination will be five bits wide
as used in the standard instruction formats. Therefore the choice of
which half of a register is to be used for reading and writing 32-bit
values must be indicated by the opcode (instruction name). The
values in source and destination fields will always be integers in the
range 0, .., 31. Implementation of the memory instruction requires
means for sending command packets to and receiving response
packets from the Memory Units. For completeness the structure of
command and response packets is described.

5.1 Support for Execution Slots
To support rapid switching of task execution between execution
slots, a Current Slot register will be used to select the register set,
program counter, and portion of the AutoBuffer that are active.
The Current Slot is set by the Task Scheduler when it switches the
processor between execution slots as a task becomes blocked or ter-
minates. This scheme is similar to the simultaneous multithreading
described by Tullsen, Eggers and Levy [13].

5.2 AutoBuffer Implementation
The Fresh Breeze architecture uses an AutoBuffer in place of the
usual level one cache. The AutoBuffer has several chunk buffers for
direct access by the processor for each execution slot. For implemen-
tation of direct access, each processor register has an extra index
field and valid bit. If the valid bit is on, the index indicates which
buffer holds the chunk identified by a handle held in the register.
The index and valid flag are set by the ChunkCreate instruction,
or when the chunk is loaded into the AutoBuffer in response to
a read instruction. The RISC-V support for cache implementation
will be adapted for realizing the AutoBuffer.

5.3 Memory Instructions for Trees of Memory
Chunks

A memory chunk holds 16 data items, each of which can hold one
value of long or double type, or two values of int or float type.
Each chunk is identified by a 64-bit handle, which can be held by a
data item of type long, providing the basis for building a tree as a
hierarchy of memory chunks.

The memory instructions are these:

ChunkCreate (dest) A memory chunk is allocated and its
handle is written in the dest register.

WriteFull (handle, index, value) The item selected by index
in the chunk identified by handle is updated to hold the long
or double value from the value register.

A RISC-V Extension for the Fresh Breeze Architecture CARRV2017, October 2017, Boston, Massachusetts USA

WriteLeft (handle, index, value) The left half of the item
selected by index in the chunk identified by handle is up-
dated to hold the int or float value from the left half of the
value register.

WriteRight (handle, index, value) The right half of the
item selected by index in the chunk identified by handle is
updated to hold the int or float value from the right half of
the value register.

ReadFull (dest, handle, index) The long or double value
in the item selected by index in the chunk identified by
handle is read and written in the dest register.

ReadLeft (dest, handle, index) The int or float value in
the left half of the item selected by index in the chunk iden-
tified by handle is read and written in the left half of the
dest register.

ReadRight (dest, handle, index) The int or float value
in the right half of the item selected by index in the chunk
identified by handle is read and written in the right half of
the dest register.

These instructions will replace the load and store instructions of
the RISC-V ISA.

5.4 Garbage Collection
In the Fresh Breeze architecture the reclamation of free chunk space
in each Memory Unit will be done automatically by the hardware.
The reference count scheme will be used. Reference counts are
held as metadata for each chunk in each Memory Unit and are
accessed using the handle of the chunk. The reference count of a
chunk is initially zero. It is incremented by one by the ChunkCreate
instruction and whenever a copy of the handle is made, for example,
when the handle is used as an argument of a TaskSpawn instruction.
When a task terminates the reference count of any chunk for which
a handle is present in a machine register is decremented. As usual,
when a reference count becomes zero, the chunk is marked free
and the reference counts of any chunks referenced by handles in
the freed chunk are decremented. Implementation of the special
instructions for memory operations and tasking will include actions
to implement this garbage collection scheme.

5.5 Memory Commands and Responses
The Fresh Breeze Processing Unit interacts with the Memory Units
by sending Memory Commands to the Memory Units for many of
the special memory and tasking instructions, and receiving the re-
sponses. These interactions will be implemented in the correspond-
ing RISC-V extensions and by adaptation of the RISC-V interrupt
facility. The purpose of each command and response is provided in
the following paragraphs.

MemoryCommands: Fresh Breeze Processing Units sendmem-
ory commands to Memory Units to instruct the latter to perform
memory related tasks for the special memory and tasking instruc-
tions.

HandleRequest Return a chunk containing handles of free
chunks.

ChunkSave Save a chunk at a specified chunk address.
ChunkLoad Read a chunk from the specified chunk address.

MemUpdate Update the item index of a Sync Chunk at the
given chunk address and test whether all workers have sub-
mitted results.

DataUpdate Update the result data item at the specified item
index in the sync results chunk at the specified address.

Memory Responses: After processing a memory command,
the Memory Unit sends back to the requesting Processing Unit one
of these memory responses:

FreeHandles Return a chunk containing 16 handles of free
chunks in response to a HandleRequest command.

MemChunk Return the chunk at the given chunk address in
response to a ChunkLoad command.

SyncData Return information from the Sync Chunk just up-
dated: the handle of the results chunk and a flag to indicate
whether all worker tasks have submitted their results. This
response is sent for a MemUpdate command generated by
a SyncUpdate instruction.

MemDone Indicate to the requesting Processing Unit that its
memory command has been executed as a response to a
ChunkSave or DataUpdate command.

5.6 Instructions for Tasking
Figure 2 shows the use of tasking instructions in codelelets to spawn
a team of worker tasks to perform a data parallel computation.
These instructions make use of the Pending Task Queue (PTQ) of
the Task Scheduler. The following are descriptions of the steps in
the execution of the tasking instructions.

SyncCreate (dest, code, count) A special sync chunk is
created containing: 1. the index code of the continuation
codelet; and 2. the number count of worker tasks that will
contribute results. A data item containing the handle of the
sync chunk is written to the dest register.

TaskSpawn (code, args, sync, index) A TaskRecord is
constructed and entered in the PTQ. When a processor is
given the TaskRecord for codelet execution, a task is initiated
to execute codelet code, where args is the handle of a chunk
containing argument data items for use by the codelet. Item
zero of the arguments chunk must contain the handle of
the sync chunk where the result of codelet execution will
be registered, and item one the index to indicate which of
several worker tasks has produced the result.

SyncUpdate (sync, index, result) This instruction is used
by a codelet to register its result with a sync chunk for use
by the continuation codelet: sync is the handle of the sync
chunk; index tells the sync chunk which task is supplying
the result; and result is a data item containing the result,
which may be a scalar value or the handle of a data chunk.

TaskQuit () This is the last instruction executed by each codelet
and terminates codelet execution.

These tasking instructions will be implemented as variants of RISC-
V System call instructions.

CARRV2017, October 2017, Boston, Massachusetts USA Jack B. Dennis and Willie Lim

6 CONCLUSION
From our recent study of the performance of funJava programs
for machine learning and our earlier studies of linear algebra ker-
nels (matrix multiply, lower upper decomposition or LUD, and dot
product), we observe that for sufficiently large input data the Fresh
Breeze performance of these computations scales linearly as the
number of Processing Units increases up to at least 256 Processing
Units. We believe this is due to two capabilities of the Fresh Breeze
architecture and compiler:

(1) The ability to decompose computations into many parallel
data driven tasks.

(2) Efficient load balancing using hardware to ensure that tasks
ready for execution are quickly and evenly distributed among
all available Processing Units.

This observation also applies to our experiments with multi-
program computationswheremore than one funJava program is run
at the same time on a Fresh Breeze system. All the system needs to
know is that there are tasks ready to be executed. It does not matter
whether the tasks are from the same computation or from several
different computations such as a machine learning program and a
computational biology program running at the same time, or from
different stages, iterations, or layers of a complex computation. This
consistency in scaling of performance with number of Processing
Units is very encouraging.

As we attempt to run larger applications using the Kiva simulator
we are hitting several limitations. These include:

(1) Running out of JVM heap space.
(2) Long simulation time.
(3) The need for garbage collection by the Java VM between

successive simulation runs.

To overcome these limitations, we are developing a multi-host
version of Kiva so that simulations may be run on conventional
multi-processor systems and the memory and processing require-
ments can be met by distributing components of the target system
over the available host processors. In addition, the Fresh Breeze
compiler will be enhanced to support the parallelism available in
stream processing and transaction processing applications.

We look forward to building an FPGA-based prototype system
that models a Fresh Breeze multi-core processor using extended
RISC-V Processing Units. This prospect is especially appealing given
the availability of the BlueDBM facility in the Computation Struc-
tures Group of theMIT Computer Science and Artificial Intelligence
Laboratory (CSAIL).

REFERENCES
[1] Guy E. Blelloch. 1992. NESL: A Nested Data-Parallel Language (Version 3.1).

Technical Report CMU-CS-92-103. Pittsburgh, PA, USA.
[2] J. B. Dennis. 2003. Fresh Breeze: A multiprocessor chip architecture guided by

modular programming principles. ACM SIGARCH Computer Architecture News
31, 1 (2003), 7–15.

[3] J. B. Dennis. 2006. The Fresh Breeze model of thread execution. In Workshop on
Programming Models for Ubiquitous Parallelism. IEEE. Published with PACT-2006.

[4] Jack B. Dennis. 2007. Compiling Fresh Breeze Codelets. In Proceedings of Program-
ming Models and Applications on Multicores and Manycores (PMAM’14). ACM,
New York, NY, USA, Article 51, 10 pages. https://doi.org/10.1145/2560683.2560691

[5] J. B. Dennis, G. R. Gao, and X. X. Meng. 2011. Experiments with the Fresh
Breeze tree-based memory model. In International Symposium on Supercomputing,
Hamburg.

[6] M. Frigo, C. E. Leiserson, and K. H. Randall. 1998. The implementation of the
Cilk-5 multithreaded language. ACM SIGPLAN Notices 33 (May 1998), 212–223.

[7] Dennis Jack, Lei Huang, Willie Lim, Hsiang-Huang Wu, and Yuzhong Yan. 2017.
Implementing Deep Neural Networks on Fresh Breeze. (2017). Presented at
Parco2017, Bologna, Italy.

[8] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, and Arvind. 2015. BlueDBM: An Appliance for Big Data Analytics. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 1–13.

[9] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B.
Noyce, and R. Thomas. 1985. Sisal: Streams and iteration in a single assignment lan-
guage. Technical Report M-146, Rev. 1. Lawrence Livermore National Laboratory,
Livermore, CA.

[10] Gregory M. Papadopoulos and David E. Culler. 1990. Monsoon: An Explicit
Token-Store Architecture. In ISCA. 82–91.

[11] Kent C. Redmond and Thomas Malcolm Smith. 1980. Project Whirlwind; The
History of a Pioneer Computer. Butterworth-Heinemann, Newton, MA, USA.

[12] Tom St. John, Jack B. Dennis, and Guang R. Gao. 2012. Massively Parallel Breadth
First Search Using a Tree-structured Memory Model. In Proceedings of the 2012
International Workshop on Programming Models and Applications for Multicores
and Manycores (PMAM ’12). ACM, New York, NY, USA, 115–123. https://doi.org/
10.1145/2141702.2141715

[13] S. J. Tullsen, D. M.; Eggers and H. M. Levy. 1995. Simultaneous multithreading:
Maximizing on-chip parallelism. In 22nd Annual International Symposium on
Computer Architecture (ISCAJ ’95). IEEE, 392–403.

https://doi.org/10.1145/2560683.2560691
https://doi.org/10.1145/2141702.2141715
https://doi.org/10.1145/2141702.2141715

	Abstract
	1 Introduction
	2 Fresh Breeze Architecture
	3 Fresh Breeze Programming Model
	3.1 Data Object Representation
	3.2 Tasking Model: Codelets

	4 Fresh Breeze Codelets
	5 RISC-V Extensions
	5.1 Support for Execution Slots
	5.2 AutoBuffer Implementation
	5.3 Memory Instructions for Trees of Memory Chunks
	5.4 Garbage Collection
	5.5 Memory Commands and Responses
	5.6 Instructions for Tasking

	6 Conclusion
	References

