
Diplomatic Design Patterns: A TileLink Case Study
Henry Cook
SiFive, Inc.

henry@sifive.com

Wesley Terpstra
SiFive, Inc.

terpstra@sifive.com

Yunsup Lee
SiFive, Inc.

yunsup@sifive.com

ABSTRACT
Modern systems-on-chip (SoCs) incorporate a large and growing
number of specialized hardware units that must be integrated into
a unified address space via a shared bus topology. This process
is labor-intensive and error-prone because the interface require-
ments of all connected blocks must bemutually satisfied. The design
productivity gains derived from the modularity of RISC-V are bot-
tlenecked by the need to integrate the cross product of processor
variants, bus ordering behaviors, and slave device capabilities. This
growing complexity has stimulated development of new tools and
methodologies to enable the completion of complex and parame-
terized SoC designs. We present two tools used to create correct-
by-construction interconnects in the Rocket Chip generator:

Diplomacy is a parameter negotiation framework for generating
parameterized protocol implementations. Beyond confirming the
mutual compatibility of the system endpoints, Diplomacy enables
them to specialize themselves based on knowledge of the other
endpoints included in a particular system. TileLink is a highly-
parameterized chip-scale shared-memory interconnect standard.
The implementation of TileLink in the Rocket chip generator ex-
ploits Diplomacy to specialize the interconnect to different levels
of protocol conformance.

KEYWORDS
Hardware generators, Agile hardware development, System-on-
Chip interconnects

ACM Reference Format:
Henry Cook, Wesley Terpstra, and Yunsup Lee. 2017. Diplomatic Design
Patterns: A TileLink Case Study. In Proceedings of First Workshop on Com-
puter Architecture Research with RISC-V , Boston, MA USA, October 2017
(CARRV’17), 7 pages.
https://doi.org/

1 INTRODUCTION
Modern systems-on-chip (SoCs) incorporate an ever-growing num-
ber of hardware units specialized to perform particular computa-
tional tasks. In order to communicate with one another andmemory,
these diverse compute resources must be integrated into a shared
interconnection network. Such a network typically consists of a
hierarchical topology of buses that provide the compute engines
with a shared global address space. The process of creating such in-
terconnects is labor-intensive and error-prone because the interface
requirements of all connected blocks must be mutually satisfied.
The design productivity gains derived from the modularity of RISC-
V are bottlenecked by the need to integrate the cross product of

CARRV’17, October 2017, Boston, MA USA
2017. ACM ISBN .
https://doi.org/

processor variants, bus ordering behaviors, and slave device capa-
bilities. This growing complexity has stimulated development of
new tools and methodologies to enable the completion of complex
and parameterized chip designs [8].

We present two tools used to create provably-correct intercon-
nects in the Rocket Chip SoC generator [1]. Our approach is cen-
tered around first constructing a graphical model of the properties
of the proposed interconnect design, and then using this model to
reason as to whether the solution provides all required functional-
ity and will exhibit correct behavior. “Correct” in this case means
the generated design will be free from protocol-level deadlock, is
guaranteed to make forward progress, and that the cross-product
of masters’ and slaves’ operational requirements is satisfied.

Diplomacy is a framework for negotiating the parameterization
of protocol implementations. Given a description of sets of inter-
connected master and slave devices, and a bus protocol template,
Diplomacy cross-checks the requirements of all connected devices,
negotiates free parameters, and supplies final parameter bindings
to adapters and endpoints for use in their own hardware gener-
ation processes. Beyond confirming the mutual compatibility of
the system endpoints, Diplomacy enables them to specialize them-
selves based on knowledge about the capabilities of other endpoints
included in a particular system.

TileLink is a highly-parameterized chip-scale shared-memory
interconnect protocol standard [5]. The protocol is hierarchically
composable and guaranteed to deadlock-free at the transaction level
[9]. The implementation of TileLink in the Rocket Chip generator
exploits Diplomacy to supply a heterogeneous level of protocol
conformance across the interconnect, specialized for the capabilities
of devices connected to certain buses.

This paper discusses how various features of diplomatic TileLink
have guided the design patterns we have adopted in the Rocket Chip
generator. We avoid manually specifying any protocol parameters
that can be inferred from a declarative description of the system
interconnection network graph. We parameterize our generators
to emit hardware based on their view of the rest of the system.
We deploy a set of graph transformation patterns that make it
easy to re-time links by inserting queues, that comprise thin single-
purpose adapters, and that safely create hierarchies of interoperable
components.

2 DIPLOMACY
The Rocket Chip generator [1] contains both the internals of the
Diplomacy library as well as packages for individual protocol im-
plementations. The sub-generators that comprise Rocket Chip are
implemented in Chisel [3], a hardware construction domain-specific
language (DSL) that is itself embedded in the Scala language. Chisel
provides a set of hardware primitives (e.g., wires, registers, muxes)
that can be manipulated using Scala functional programming con-
structs to efficiently express parameterized hardware designs. Chisel

https://doi.org/
https://doi.org/

CARRV’17, October 2017, Boston, MA USA Henry Cook, Wesley Terpstra, and Yunsup Lee

Figure 1: Example of the diplomatic graph created by the Rocket Chip generator. The yellow squares are diplomatic nodes and
arrows are diplomatic edges. Note that two colors of edge indicate that both TileLink and AXI4 protocols are deployed in this
SoC interconnect.

designs can be compiled into structural RTL languages such as Ver-
ilog. While Chisel makes it easy to write parameterized design
components, it provides no particular functionality related to pa-
rameterization other than that built in to Scala itself.

Diplomacy extends Chisel, being a library that provides a param-
eter negotiation framework for generating hardware connected to
a shared interconnection network. Operating on a description of a
SoC design expressed as a directed graph of interconnected nodes,
Diplomacy cross-checks a set of protocol-specific requirements
over relevant subsets of the interconnect. Diplomacy allows for
the negotiation of any free parameters within a protocol, such as
particular data or control wire widths, customizing them based on
the topology expressed by each sub-graph of communicating nodes.
After enabling all the endpoint nodes to negotiate protocol parame-
ter values, Diplomacy then supplies concrete parameter bindings to
individual adapters and endpoint generators, which can use them
to drive their own individual hardware generation processes.

Diplomacy is thus an example of two-phase hardware elabora-
tion. The first phase is parameter negotiation, wherein the topology
of the graph is discovered and the nodes negotiate the value of the
parameters on every edge. The second phase is concrete module
generation, in which the Chisel compiler is invoked on the module
hierarchy associated with the node graph. As each Chisel module
is elaborated, it can make use of the diplomatic parameters that
have been precomputed by its associated diplomatic nodes.

The fundamental abstraction used by Diplomacy is a graph of
nodes and edges representing the topology of the shared intercon-
nect. Nodes represent points in the design where diplomatic param-
eters are used to emit hardware. Edges represent a directed pairing
of master and slave interfaces, where the source node presents a
master interface and sink node presents the matching slave inter-
face. Nodes may participate in multiple edge pairings, and may
either have a single type of interface (an endpoint node), or may
forward from one type to the other (an adapter node). Edges com-
municate a protocol-specific set of parameters between masters

and slaves, and these parameters are specified to flow either out-
ward from source to sinks, or inward from sinks to sources. Edges
are used to elaborate the wires that actually create the physical
connections in the final design, in the form of wires or module IOs.
A module may have multiple nodes and a node may have multiple
edges.

Beyond confirming the mutual compatibility of the system end-
points, Diplomacy enables them to specialize themselves based on
knowledge of the other endpoints included in a particular system.
Each node supplies its associated generator with a set of edges
that contain a view of the interconnect as seen from that node. By
accessing the parameter values available on a particular edge, the
generator can specialize its behavior according to the capabilities
of that edge. For example, it may size the hardware it generates
internally according to the negotiated width parameters supplied
by the edge.

Protocol parameters may be independently specified by nodes
or derived from negotiations between nodes. Some independent
parameters are supplied by source node endpoints, and others by
sink node endpoints. Adapter nodes may perform some transfor-
mation on the parameters passed through them in either direction.
Examples of parameters include:

• The cardinality of sources connected to a particular sink.
• The cardinality of sinks connected to a particular source.
• The type and size of operations issued by each master.
• The type and size of operations issued by each slave.
• The type and size of operations allowed on a particular range
of addresses.
• Other properties governing allowed behavior on particular
address space regions (e.g., executability, cacheability).
• Ordering requirements on operations over edges (e.g., FIFO).
• Presence of certain fields within control wire bundles.
• Widths of fields within control or data wire bundles.

Diplomatic Design Patterns: A TileLink Case Study CARRV’17, October 2017, Boston, MA USA

Parameter negotiation itself consists of two independent sub-
processes. Beginning with the source endpoint nodes, some pa-
rameters flow outwards until they have reached all sink nodes.
Independently, beginning with the sink endpoint nodes, other pa-
rameters flow inwards until they have reached all source nodes.
Thus, every edge receives a complete set of parameters describing
it in both directions.

Negotiation may fail if a certain adapter transformation has
requirements that cannot be met, or if a certain endpoint is required
to exhibit behavior which it cannot implement. Such a failure is
desirable from the perspective of designer productivity because
it occurs so early in the design-verify feedback loop [8]. Rather
than having to detect that a interconnect has been misconfigured
through laborious simulation of transactions over the bus, designers
are notified of issues before the hardware has even been generated.

Diplomacy is bus-protocol-independent, in that any protocol
with parameterized features can be templated using Diplomatic
primitives and deployed alongside other Diplomatic protocol im-
plementations. Modules that serve as converters between the bus
protocols also translate their parameters between each type of diplo-
matic nodes, allowing the entire interconnect to be composed of
heterogeneous protocols while still ensuring overall correctness.
In addition to developing TileLink, our own diplomatic shared-
memory coherence protocol discussed in the following section, we
have templated multiple AMBA protocols [2] (e.g., AXI4, AHB-
Lite, APB) in order to allow them to be expressed and deployed
diplomatically.

Figure 1 shows a simple example Rocket Chip design’s diplomatic
graph. The yellow squares are diplomatic nodes and arrows are
diplomatic edges. Note that two colors of edge indicate that both
TileLink and AXI4 protocols are deployed in this SoC interconnect:
AXI4 is used to communicate with the outside world and TileLink
is used for internal connectivity. The upper left collection of nodes
is a Rocket processor with its instruction and data caches. The
lower left series of nodes is an AXI4-to-TileLink bridge. The center
right sequence of nodes are various peripheral devices including a
boot ROM and debug unit. They are bracketed by two TileLink-to-
AXI4 bridges for issuing cacheable and uncacheable memory access
operations respectively.

3 TILELINK
TileLink [7] is a chip-scale interconnect protocol standard for pro-
viding multiple processing elements with coherent access to shared
memory and other memory-mapped devices. Specifically, TileLink
is designed to be deployed in a System-on-Chip (SoC) to con-
nect general-purpose multiprocessors, co-processors, accelerators,
caches, DMA engines, memory controller, and simple or complex
peripheral devices. The protocol is optimized to be efficient when
deployed within tightly-coupled, low-latency SoC buses. It can also
be implemented over hierarchically-composable, point-to-point
networks, and can scale down to interface with low-throughput
slave devices or scale up to provide high-throughput interconnects.
TileLink provides coherent access for an arbitrary mix of caching
or non-caching masters to a physically-addressed, shared-memory
system. Cache coherence is maintained by a customizable, MOESI-
equivalent protocol based on hierarchical composition [4, 11]. The

protocol supports out-of-order transaction completion to improve
throughput for concurrent operations.

The TileLink specification maps closely onto the abstractions
used by Diplomacy [5]. TileLink agents are semantically equivalent
to diplomatic graph nodes. TileLink links are semantically equiva-
lent to diplomatic graph edges. Figure 2 provides an overview of
an example TileLink network topology graph.

Within a link, TileLink contains five logical channels, which
correspond to the priorities of the messages that they carry. Each
channel consists of control and data signals that are transmitted us-
ing a decoupled, ready-valid based handshaking protocol. TileLink
memory operations comprise a series of messages sent over chan-
nels, obeying certain transaction rules (e.g. all requests have re-
sponses). To avoid deadlock, TileLink specifies a priority amongst
the channels’ messages that must be strictly enforced. The prioriti-
zation of messages across channels is A « B « C « D « E, in order
of increasing priority. Channels are directional, in that each passes
messages either from master to slave interface or from slave to
master interface. Figure 3 illustrates the directionality of the five
channels.

The two basic channels required to perform memory access
operations are:

Channel A. Transmits a request that an operation be per-
formed on a specified address range, accessing or caching
the data.

Channel D. Transmits a data response or acknowledgement
message to the original requestor.

The protocol conformance level that enables the system to in-
clude coherent caches adds three additional channels, which provide
the capability to manage read/write permissions on cached blocks
of data:

Channel B. Transmits a request that an operation be per-
formed at an address cached by a master agent, accessing or
writing back that cached data.

Channel C. Transmits a data or acknowledgment message in
response to a Channel B request. Also writes back dirtied
cached data.

Channel E. Transmits a final acknowledgment of a cache block
transfer from the original requestor, used for serialization.

The design of TileLink is intended to exploit the features of
Diplomacy, in that the protocol is modular with respect to the type
of operations that will be transmitted over a given link. Master
and slave agents can agree that certain operations will not be per-
formed (perhaps removing the need for entire physical channels to
be elaborated), or that there is a maximum size of messages that
will be sent (removing the need for beat-counting control logic).
Fields of unused message types can be pruned from the signal en-
coding, and identification fields can be expanded only for portions
of the network graph that require additional bits to route requests
and responses. While the TileLink specification [7] explicitly enu-
merates three levels of protocol conformance, it does not preclude
implementations from adopting their own subset of the protocol,
and the Rocket Chip implementation of TileLink uses Diplomacy
to subset different features at a very fine granularity.

Additionally, tracking and negotiating which address spaces be-
long to which region types as part of the first phase of diplomatic

CARRV’17, October 2017, Boston, MA USA Henry Cook, Wesley Terpstra, and Yunsup Lee

Crossbar

Agent

M
as

te
r I

F
M

as
te

r I
F

Sl
av

e
IF

Sl
av

e
IFProcessor

Ag
en

t
M

as
te

r I
F Memory-mapped

device

Ag
en

t
Sl

av
e

IF

Memory controller

Ag
en

t
Sl

av
e

IF

Cache

Agent

Sl
av

e
IF

M
as

te
r I

F

Processor

Ag
en

t
M

as
te

r I
F

Figure 2: Example of a TileLink network topology DAG with four endpoints. The yellow agents are diplomatic nodes and the
green links are diplomatic edges. Two modules contain an agent that has both a master and a slave interface, i.e. diplomatic
adapters.

ModuleModule

 Agent (Node) Agent (Node)

Master
Interface

Slave
Interface

Link (Edge)

Channel A

Channel D

Channel C

Channel E

Channel B

Figure 3: The five channels that comprise a TileLink
link/edge between any pair of agents/nodes.

elaboration allows us to elide any “protection” or “region” fields
within the messages themselves. The legality of memory accesses
must be determined by the sender before the transaction is initi-
ated. While we do include an error field for dynamically reporting
transient faults, the availability of statically knowable properties of
the memory system via Diplomacy means that we do not need to
devote actual hardware resources to transmit message fields that
would be present solely for determining region type compatibility.

TileLink provides formally-verifiable deadlock freedom for any
SoC consisting of compliant network and endpoint implementa-
tions [9]. This property emerges from the following protocol design
decisions:

Generality of protocol interfaces: All agents use the same
transaction structure [4, 11], though the message fields them-
selves might be parameterized differently

Scalability rules for hierarchy: The topology of the inter-
connect must be a Directed Acyclic Graph (DAG). Preventing

cycles in the graph is necessary to avoid deadlocks based on
cyclic hold-and-wait behavior.

Strict prioritization of channels: Messages transmitted on
a higher priority channel cannot be blocked by messages on
a lower priority one.

Forward progress through decoupled interfaces: We pro-
vide rules governing when message recipients are allowed
to reject a proffered message. It can be rejected only for a
bounded time period, or while waiting on a higher priority
message to be sent or responded to.

The above properties ensure that TileLink is hierarchically com-
posable, allowing for highly-configurable network topologies that
mix and match components with stateless bus-width adaptation
and burst fragmentation, and ease register-stage insertion for retim-
ing links. Zero-cycle response time is not only legal but support for
it is mandatory, and legal combinational couplings of ready/valid
signals are also specified. The design ramifications of these features
will be discussed in more detail in the following section.

4 DESIGN PATTERNS
In this section we will examine how Diplomacy and TileLink have
enabled us to use a set of hardware design patterns that are well-
adapted to a generator-centric development environment.

4.1 DRYing Out Parameterization
Don’t Repeat Yourself (DRY) is a software development principle
stated as "Every piece of knowledge must have a single, unambigu-
ous, authoritative representation within a system" [6]. One of the
main productivity advantages of hardware generators over tradi-
tional HDL approaches is that many similar designs can be captured
and expressed as parameterizations of a single generator, which is a
boon when making changes that would otherwise require manual
updates to each individual design. However, while parameterized
generation is an excellent source of DRYness across a family of
hardware designs, the parameters themselves can rapidly become
a source of non-orthogonalized complexity.

Diplomatic Design Patterns: A TileLink Case Study CARRV’17, October 2017, Boston, MA USA

Consider the example of a parameterized arbiter generator that
produces arbiters that take N inputs, mux them down to a single
output, and append a log2(N) integer to the source field of arbitrated
messages for use in routing their responses to the correct port. In a
non-diplomatic code base, we might have to bind the cardinality
N in several places: the constructor to the Arbiter module and
the constructors of all downstream expanded-source-field wires.
Furthermore, we must then actually instantiate and wire up as
many inputs as we previously declared that the crossbar is going
to have. This proliferation of the number of places that N must
be specified results in drag on reconfigurability. All the different
parameters that are based on N must agree on N’s value, and if
this agreement is not checked, misconfigurations will occur as the
design space evolves.

Diplomacy allows us to avoid specifying any parameters that can
instead be inferred from the declarative description of the graph. In
the case of a diplomatic arbiter generator, the fact that we connected
N source nodes to the arbiter’s node is a single, unambiguous, au-
thoritative representation. We do not have to explicitly state the
cardinality of N anywhere in the code base, and the value of N that
is inferred from the graph topology during the first phase of elabo-
ration is automatically propagated to both the arbiter generator as
well as to all downstream edges used to parameterize wire widths
during the second phase.

4.2 Hardware Generation with A View
Beyond serving as an unambiguous source of cardinality informa-
tion, the diplomatic graph provides generators with knowledge of
the capabilities of the other nodes in the system with which they
are interconnected.

Master nodes can see the capabilities of all slaves whose memory-
mapped addresses are visible to them. This view can be used to
determine whether a particular memory operation will be legal to is-
sue, either at Chisel compile time, or within the generated hardware
control logic. The TLB in Rocket Chip’s L1 cache generator is an ex-
ample of such a view-exploiting master device. It calculates whether
a given page supports Read/Write/Execute operations, whether it
can be safely cached, or whether it has support for certain atomic
operations, all based on the diplomatically-generated map of ad-
dresses to RegionTypes. Statically, at Chisel compile time, the TLB
checks whether the size of caching memory transfers supported for
each slave device includes the the size of that operation issuable by
the containing processor’s cache. The TLB also generates hardware
circuits that calculate the permissions to be recorded in a particular
page table entry, again based in-part on diplomatic information
made available from the graph.

Conversely, slaves can see the capabilities of all masters whose
operations can reach them. For example, an L2 cache could see
both the total number of masters that can possibly send it requests,
which would be useful for generating the size of MSHR buffers. Ad-
ditionally, it could count the total number of masters that have the
capability of caching its data, which would be useful for generating
the number of directory bits needed to track the locations of shared
copies of a block. Finally, it could track the ordering requirements of
particular masters, which would be necessary to properly generate

control logic for issuing out-of-order requests to the outer memory
system.

In a similar fashion, adapter nodes provide interconnect gen-
erators with information about the cardinality and capabilities of
both masters and slaves. The TileLink protocol only requires the
use of all five channels when some master is capable of caching
blocks of data. If an interconnect generator creates separate physi-
cal networks for each channel (a reasonable choice for obtaining
TileLink’s required inter-channel prioritization), it can elide the
wiring hardware for the unneeded channels when it determines
that no masters can issue cache block transfers over itself.

Overall, this approach to hardware generation encourages de-
signers to take a much more global view of the system, even when
defining the generative behavior of localized components. The pa-
rameters described via diplomatic edges form a stable API with
which a generator can query the surroundings in which it instanti-
ated, no matter where in the global design that may be.

4.3 Correct By Composition
The properties of the the TileLink protocol enumerated in the pre-
vious section have the advantage of ensuring that design changes
encompassing certain transformations on an extant diplomatic
graph are guaranteed to produce another correct graph and im-
plementation. These transformations are all based on injecting
new sub-graphs that preserve the DAG property. In this subsection
we discuss three particular transformations that have shaped the
structure of the Rocket Chip codebase.

We term the first of these transformation patterns combinational
composition. In this pattern, multiple adapter nodes are composed
in a linear sequence. This pattern is enabled by the flow control
rules of the TileLink protocol: responses to messages may be sent
on the same cycle a request is received, and the ready/valid signals
of each channel may be combinatorially forwarded from the inward
side of the adapter to the outward side and vice versa.

Taken together, these combinational flow control properties en-
courage the use of “thin” adapters, where every adapter serves
a unique and orthogonalized purpose. For example, we provide
individual TileLink adapters that

• modify control signals (e.g., fragment burst messages into a
series of single-beat messages)
• adjust message field widths (e.g., widen the width of the data
bus plane)
• manage transaction-level requirements acrossmessages (e.g., en-
sure that a series of messages request and responses obey
FIFO ordering)

Larger logical adapters can be created by composing multiple
small adapters to achieve a complete functionality, while the indi-
vidual adapters can be unit tested and verified independently of one
another. This pattern is well-displayed by the chains of adapters
converting from TileLink to AXI4 or vice versa in Figure 1. Beyond
the productivity gains in verification methodology, this pattern
allows us to create standardized bus attachment points to which
authors of new peripheral devices or co-processors can attach their
contribution. Each attachment point comprises of a set of adapters
providing well-defined behaviors with zero cycle delay overhead.

CARRV’17, October 2017, Boston, MA USA Henry Cook, Wesley Terpstra, and Yunsup Lee

The second transformation pattern, sequential composition, addi-
tionally exploits the fact that the decoupled nature of the TileLink
channels make it trivial to insert an interstitial adapter that is a
queue. We provide a standardized set of buffering parameters that
control not only the depth of the queue on each TileLink channel,
but also the flow control parameters (e.g., pipeling enqueue of back-
to-backmessages or flowingmessages through empty queues). Mak-
ing the insertion of queues along chains of nodes trivial makes the
design process of searching for optimal timing decoupling points
very lightweight. This flexibility in turn enables faster iterations
with backend QoR teams.

The final transformation pattern, hierarchical composition, is
the most general and the most powerful. Enabled by TileLink’s
deadlock freedom guarantees, we can swap out any node of the
diplomatic graph for an entirely new subgraph that maintains the
same properties at its inward and/or outward attachment points.
For example, this pattern is a natural fit for creating hierarchies of
inclusive caches, since the branching factor of each layer of caches
is orthogonal and invisible to the masters on the inward side of the
innermost cache’s node. In a similar fashion, a single adapter node
can be replaced with an address filter adapter node and banked
copies of that adapter backed by unique memory channels.

Declaring that a node of some type exists and can be attached to
by generators with certain properties, without stating a priori how
many such generators must be attached to it, unlocks a powerful
capability for system reconfigurability via modular mix-in com-
position [10]. Scala’s (and thereby Chisel’s) support for multiple
inheritance allows us to compose sub-graph components via traits
that statically depend only on certain nodes being available for con-
nection. Figure 4 provides an example of this pattern, wherein traits
describing the connection between an abstract set of processors and
memory are combined with traits that supply a concrete coherence
manager and a concrete set of processors. Incompatibilities can be
detected at Scala compile time or during either phase of diplomatic
Chisel elaboration.

5 CONCLUSION
In this paper we have discussed how various features of diplomatic
TileLink have guided the design patterns adopted in the Rocket
Chip generator. We avoid re-specifying any parameters that can be
inferred from a declarative description of the system interconnect
graph. We parameterize our generators to emit hardware based
on a diplomatically negotiated view of the system. We deploy a
set of safe graph transformation patterns that make it easy to re-
time links with queues, that compose more complicated adapters
from single-purpose ones, and that inject hierarchies of composable
components at standardized attachment points.

We see many forthcoming opportunities to deploy correct-by-
construction software development methods to other aspects of
SoC hardware component integration. Clock domains are one area
where each mixed-in component could specify how it relates to
the overall interconnect graph, and the correct clock and reset
would be supplied to the second phase elaboration automatically.
Interrupts are another type of signal where we would like to avoid
any explicit notion of cardinality and instead infer it from graphical
structure. Finally, we are working to develop endpoint generators

// Trait containing attachment points common to all systems

trait ConnectsToMemory {

val processorMasterNode: TLSourceNode // abstract member

val memorySlaveNode: TLSinkNode = LazyModule(new TLRAM).node

}

// No coherence manager provided, only a single cache is safe

trait ConnectsIncoherently extends ConnectsToMemory {

require(processorMasterNode.masters.size <= 1)

memorySlaveNode := processorMasterNode

}

// Make some coherence manager and insert it in the node graph:

trait ConnectsViaBroadcastHub extends ConnectsToMemory {

val hub = LazyModule(new TLBroadcastHub)

hub.node := processorMasterNode

memorySlaveNode := hub.node

}

trait ConnectsViaL2Cache extends ConnectsToMemory {

val l2 = LazyModule(new TLCache)

l2.node := processorMasterNode

memorySlaveNode := l2.node

}

// Add some master nodes and reify the attachment point:

trait HasOneCore extends ConnectsToMemory {

val core = LazyModule(new Rocket)

val processorMasterNode = core.node

}

trait HasTwoCores extends ConnectsToMemory {

val cores = List(2).fill(LazyModule(new Rocket))

val xbar = LazyModule(new TLXbar)

val processorMasterNode = xbar.node

cores.foreach { c => xbar.node := c.node }

}

// Compile and elaborate correct hardware:

class SingleCoreSystem extends HasOneCore with ConnectsIncoherently

class DualCoreSystem extends HasTwoCores with ConnectsViaBroadcastHub

class DualCoreL2System extends HasTwoCores with ConnectsViaL2Cache

// Fails at Scala compile time due to missing TLSourceNode instance:

class IncompleteSystem extends ConnectsViaL2Cache

// Fails during elaboration due to failed requirement:

class UnsafeSystem extends HasTwoCores ConnectsIncoherently

Figure 4: Using multiple inheritance to inject different node
hierarchies at two places in the memory subsystem.

that are protocol-independent, presenting generator authors with
standard APIs that allow their device to be deployed regardless of
the underlying interconnect protocol.

The Rocket Chip code base containing Diplomacy itself, all of our
diplomatic bus protocol implementations, and a variety of TileLink-
compatible cache, interconnect, and device generators, is open
source and available as part of the Free Chips Project at
https://github.com/freechipsproject/rocket-chip.

Diplomatic Design Patterns: A TileLink Case Study CARRV’17, October 2017, Boston, MA USA

REFERENCES
[1] Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Biancolin, Christopher

Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraelevitz, et al. 2016.
The rocket chip generator. (2016).

[2] ARM AMBA AXI and ACE Protocol Specification AXI. 2011. AXI4, and AXI4-Lite,
ACE and ACE-Lite. Technical Report. Technical report.

[3] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference. ACM, 1216–1225.

[4] Jesse G Beu, Michael C Rosier, and Thomas M Conte. 2011. Manager-client
pairing: a framework for implementing coherence hierarchies. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture. ACM,
226–236.

[5] Henry Michael Cook. 2016. Productive design of extensible on-chip memory
hierarchies. University of California, Berkeley.

[6] Andrew Hunt and David Thomas. 2000. The Pragmatic Programmer. Addison
Wesley 15 (2000).

[7] SiFive Inc. 2017. SiFive TileLink Specification. Technical Report. SiFive, Inc.
https://www.sifive.com/documentation/tilelink/tilelink-spec/

[8] Yunsup Lee, Andrew Waterman, Henry Cook, Brian Zimmer, Ben Keller, Alberto
Puggelli, Jaehwa Kwak, Ruzica Jevtic, Stevo Bailey, Milovan Blagojevic, et al. 2016.
An agile approach to building risc-v microprocessors. IEEE Micro 36, 2 (2016),
8–20.

[9] Kenneth McMillan. 2016. Modular specification and verification of a cache-
coherent interface. In Proceedings of the 16th Conference on Formal Methods in
Computer-Aided Design. FMCAD Inc, 109–116.

[10] Martin Odersky and Matthias Zenger. 2005. Scalable component abstractions. In
ACM Sigplan Notices, Vol. 40. ACM, 41–57.

[11] Meng Zhang, Alvin R Lebeck, and Daniel J Sorin. 2010. Fractal coherence:
Scalably verifiable cache coherence. In Microarchitecture (MICRO), 2010 43rd
Annual IEEE/ACM International Symposium on. IEEE, 471–482.

https://www.sifive.com/documentation/tilelink/tilelink-spec/

	Abstract
	1 Introduction
	2 Diplomacy
	3 TileLink
	4 Design Patterns
	4.1 DRYing Out Parameterization
	4.2 Hardware Generation with A View
	4.3 Correct By Composition

	5 Conclusion
	References

